精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)和g(x)是两个定义在区间M上的函数,若对任意的x∈M,存在常数x0∈M,使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),则称函数f(x)和g(x)在区间M上是“相似函数”,若f(x)=|log2(x-1)|+b与g(x)=x3-3x2+8在[$\frac{5}{4}$,3]上是“相似函数”,则函数f(x)在区间[$\frac{5}{4}$,3]上的最大值为(  )
A.4B.5C.6D.$\frac{9}{2}$

分析 由对数函数的性质可得f(x)的值域,再由导数求得g(x)的值域,根据新定义,可得b=4,即可得到所求的最大值.

解答 解:f(x)=|log2(x-1)|+b在区间[$\frac{5}{4}$,3]上的值域为[b,b+2],
g(x)=x3-3x2+8的导数为g′(x)=3x2-6x,g′(x)=0解得x=2,
由g(2)=4,g($\frac{5}{4}$)=$\frac{337}{64}$,g(3)=8,即有g(x)的值域为[4,8],
由“相似函数”可得f(2)=g(2),即b=4,
则函数f(x)在区间[$\frac{5}{4}$,3]上的最大值为b+2=6,
故选:C.

点评 本题考查新定义的理解和运用,主要考查对数函数的性质和导数的运用:求最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.给出三条直线l1:4x+y=4,l2:mx+y=0,l3:2x-3my=4.
(1)m为何值时,三线共点;
(2)m=0时,三条直线能围成一个三角形吗?
(3)求当三条直线围成三角形时,m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C对隧道底AB的张角θ最大时采集效果最好,则采集效果最好时位置C到AB的距离是(  )
A.2$\sqrt{2}$mB.2$\sqrt{3}$mC.4 mD.6 m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在等比数列{an}中,已知a1=-1,a4=64,求q与S4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求函数y=sin(2x-$\frac{π}{4}$)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右顶点是双曲线$\frac{x^2}{3}-{y^2}=1$的顶点,且椭圆的上顶点到双曲线的渐近线的距离为$\frac{{\sqrt{3}}}{2}$,
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在同时满足下列两个条件的直线l:①与双曲线相交于Q1、Q2两点,且$\overrightarrow{O{Q_1}}•\overrightarrow{O{Q_2}}=-5$,②与相交于M1、M2两点,且$|{{M_1}{M_2}}|=\sqrt{10}$.若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为,F1和F2,上顶点为B,BF2,延长线交椭圆于点A,△ABF的周长为8,且$\overrightarrow{B{F_1}}•\overrightarrow{BA}$=0.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点P(1,0)的直线l与椭圆C相交于M,N两点,点T(4,3),记直线TM,TN的斜率分别为k1,k2,当k1k2最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知△ABC的三条高是AD,BE,CF,用向量方法证明:AD,BE,CF相交于一点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.化简(1+2${\;}^{-\frac{1}{16}}$)(1+2${\;}^{-\frac{1}{8}}$)(1+2${\;}^{-\frac{1}{4}}$)(1+2${\;}^{-\frac{1}{2}}$)得到的结果是(  )
A.$\frac{1}{2}$(1-2${\;}^{-\frac{1}{16}}$)-1B.(1-2${\;}^{-\frac{1}{16}}$)-1C.1-2${\;}^{-\frac{1}{16}}$D.$\frac{1}{2}$(1-2${\;}^{-\frac{1}{16}}$)

查看答案和解析>>

同步练习册答案