16£®ÒÑÖªµãF£¨1£¬0£©£¬µãPÎªÆ½ÃæÉϵ͝µã£¬¹ýµãP×÷Ö±Ïßl£ºx=-1µÄ´¹Ïߣ¬´¹×ãΪH£¬ÇÒ$\overrightarrow{HP}$•$\overrightarrow{HF}$=$\overrightarrow{FP}$•$\overrightarrow{FH}$£®
£¨1£©Ç󶯵ãPµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©ÉèµãPµÄ¹ì¼£CÓëxÖá½»ÓÚµãM£¬µãA£¬BÊǹ켣CÉÏÒìÓÚµãMµÄ²»Í¬DµÄÁ½µã£¬ÇÒÂú×ã$\overrightarrow{MA}$•$\overrightarrow{MB}$=0£¬ÔÚA£¬B´¦·Ö±ð×÷¹ì¼£CµÄÇÐÏß½»ÓÚµãN£¬ÇóµãNµÄ¹ì¼£EµÄ·½³Ì£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÇóÖ¤£ºkMN•kABΪ¶¨Öµ£®

·ÖÎö £¨1£©ÓÉ$\overrightarrow{HP}•\overrightarrow{HF}=\overrightarrow{FP}•\overrightarrow{FH}$£¬Õ¹¿ªÊýÁ¿»ý¹«Ê½¿ÉµÃ$|\overrightarrow{HP}|=|\overrightarrow{FP}|$£¬¿ÉÖªµãPΪÏß¶ÎHFÖд¹ÏßÉϵĵ㣬ÓÉÅ×ÎïÏß¶¨Òå¿ÉµÃ¶¯µãPµÄ¹ì¼£CΪÒÔFΪ½¹µãµÄÅ×ÎïÏߣ¬
Æä·½³ÌΪy2=4x£»
£¨2£©ÉèÖ±ÏßMAµÄбÂÊΪk£¨k¡Ù0£©£¬Ð´³öÖ±ÏßMAµÄ·½³Ì£¬ºÍÅ×ÎïÏßÁªÁ¢ÇóµÃ$A£¨\frac{4}{k^2}£¬\frac{4}{k}£©$£¬½øÒ»²½ÇóµÃÇÐÏßNAµÄ·½³Ì£¬Í¬ÀíÇó³öÇÐÏßNBµÄ·½³Ì£¬ÁªÁ¢¼´¿ÉÇóµÃ½»µãNµÄ¹ì¼£·½³Ì£»
£¨3£©ÓÉ£¨2£©Çó³öNµÄ×ø±ê£¬ÓÉÁ½µã×ø±êÇóбÂʹ«Ê½ÇóµÃkMN¡¢kABµÃ´ð°¸£®

½â´ð £¨1£©½â£ºÓÉ$\overrightarrow{HP}•\overrightarrow{HF}=\overrightarrow{FP}•\overrightarrow{FH}$¿ÉµÃ£º$|\overrightarrow{HP}|•|\overrightarrow{HF}|cosPHF=|\overrightarrow{FP}|•|\overrightarrow{FH}|cosPFH$£¬
¼´$|\overrightarrow{HP}|=|\overrightarrow{FP}|$£¬¿ÉÖªµãPΪÏß¶ÎHFÖд¹ÏßÉϵĵ㣬¹Ê¶¯µãPµÄ¹ì¼£CΪÒÔFΪ½¹µãµÄÅ×ÎïÏߣ¬
Æä·½³ÌΪy2=4x£»
£¨2£©½â£ºÉèÖ±ÏßMAµÄбÂÊΪk£¨k¡Ù0£©£¬ÔòMAËùÔÚÖ±Ïß·½³ÌΪy=kx£¬
ÁªÁ¢Ö±ÏßMAºÍÅ×ÎïÏß·½³Ì£¬µÃ$A£¨\frac{4}{k^2}£¬\frac{4}{k}£©$£¬
¿ÉÇóµÃÇÐÏßNAµÄ·½³ÌΪ$\frac{4}{k}y=4•\frac{{x+\frac{4}{k^2}}}{2}$£¬»¯¼òÕûÀíµÃ$y=\frac{k}{2}x+\frac{2}{k}$£¬¢Ù
¡ßMA¡ÍMB£¬¡à${k_{OB}}=-\frac{1}{k}$£¬
¹ÊÖ±ÏßMBµÄ·½³ÌΪ$y=-\frac{1}{k}x$£®
ÁªÁ¢Ö±ÏßMBºÍÅ×ÎïÏß·½³Ì£¬½âµÃB£¨4k2£¬-4k£©£¬
¡àÇÐÏßNBµÄ·½³ÌΪ$-4ky=4•\frac{{x+4{k^2}}}{2}$£¬»¯¼òÕûÀíµÃ$y=-\frac{1}{2k}x-2k$£¬¢Ú
¢Ù-¢ÚµÃ£¬$£¨\frac{k}{2}+\frac{1}{2k}£©x+2£¨\frac{1}{k}+k£©=0$£¬½âµÃx=-4£¨¶¨Öµ£©£®
¹ÊµãNµÄ¹ì¼£Îªx=-4£¬ÊÇ´¹Ö±xÖáµÄÒ»Ìõ¶¨Ö±Ïߣ»
£¨3£©Ö¤Ã÷£ºÓÉ£¨2£©ÓÐ$N£¨-4£¬\frac{2}{k}-2k£©$£¬
¡à${k_{NM}}=\frac{{{k^2}-1}}{2k}$£¬${k_{AB}}=\frac{{-2pk-\frac{2p}{k}}}{{2p{k^2}-\frac{2p}{k^2}}}=\frac{k}{{1-{k^2}}}$£®
¹Ê${k_{NM}}•{k_{AB}}=-\frac{1}{2}$£¨¶¨Öµ£©£®

µãÆÀ ±¾Ð¡ÌâÖ÷Òª¿¼²éÅ×ÎïÏßµÄÐÔÖÊ£¬Ö±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÓ¦ÓÃÄÜÁ¦£¬¾ßÌåÉæ¼°µ½Å×ÎïÏß±ê×¼·½³ÌµÄÇóÈ¡£¬Ö±ÏßÓëÔ²×¶ÇúÏßµÄÏà¹ØÖªÊ¶ÒÔ¼°Ô²×¶ÇúÏßÖж¨ÖµµÄÇóÈ¡£®±¾Ð¡Ìâ¶Ô¿¼ÉúµÄ»¯¹éÓëת»¯Ë¼Ïë¡¢ÔËËãÇó½âÄÜÁ¦¶¼ÓкܸßÒªÇó£¬ÊÇѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÔڵȱÈÊýÁÐ{an}ÖУ¬ÒÑÖªa1=-1£¬a4=64£¬ÇóqÓëS4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÒÑÖª¡÷ABCµÄÈýÌõ¸ßÊÇAD£¬BE£¬CF£¬ÓÃÏòÁ¿·½·¨Ö¤Ã÷£ºAD£¬BE£¬CFÏཻÓÚÒ»µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÔÚÕýËÄÀą̂ABCD-A1B1C1D1ÖУ¬A1B1=a£¬AB=2a£¬AA1=$\sqrt{2}a$£¬E£¬F·Ö±ðÊÇAD£¬ABµÄÖе㣮
£¨1£©ÇóÖ¤£ºÆ½ÃæEFB1D1¡ÎÆ½ÃæBDC1£»
£¨2£©ÇóÖ¤£ºA1C¡ÍÆ½ÃæBDC1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}{x^2}$+£¨k-1£©x-k+$\frac{3}{2}$£¬g£¨x£©=xlnx£®
£¨¢ñ£©Èôº¯Êýg£¨x£©µÄͼÏóÔÚ£¨1£¬0£©´¦µÄÇÐÏßlÓ뺯Êýf£¨x£©µÄͼÏóÏàÇУ¬ÇóʵÊýkµÄÖµ£»
£¨¢ò£©µ±k=0ʱ£¬Ö¤Ã÷£ºf£¨x£©+g£¨x£©£¾0£»
£¨¢ó£©Éèh£¨x£©=f£¨x£©+g¡ä£¨x£©£¬Èôh£¨x£©ÓÐÁ½¸ö¼«Öµµãx1£¬x2£¨x1¡Ùx2£©£¬ÇÒh£¨x1£©+h£¨x2£©£¼$\frac{7}{2}$£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªOÎª×ø±êÔ­µã£¬A£¬BÁ½µãµÄ×ø±ê¾ùÂú×ã²»µÈʽ×é$\left\{\begin{array}{l}{x-3y+1¡Ü0}\\{x+y-3¡Ü0}\\{x-1¡Ý0}\end{array}\right.$Ôòtan¡ÏAOBµÄ×î´óÖµµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{3}{4}$B£®$\frac{5}{7}$C£®$\frac{4}{7}$D£®$\frac{9}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®»¯¼ò£¨1+2${\;}^{-\frac{1}{16}}$£©£¨1+2${\;}^{-\frac{1}{8}}$£©£¨1+2${\;}^{-\frac{1}{4}}$£©£¨1+2${\;}^{-\frac{1}{2}}$£©µÃµ½µÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{2}$£¨1-2${\;}^{-\frac{1}{16}}$£©-1B£®£¨1-2${\;}^{-\frac{1}{16}}$£©-1C£®1-2${\;}^{-\frac{1}{16}}$D£®$\frac{1}{2}$£¨1-2${\;}^{-\frac{1}{16}}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷¡°µ±nÎªÆæÊýʱ£¬xn+ynÄܱ»x+yÕû³ý¡±£¬ÔÚÑéÖ¤n=1ÕýÈ·ºó£¬¹éÄɼÙÉèӦд³É£¨¡¡¡¡£©
A£®¼ÙÉèn=k£¨k¡ÊN£©Ê±ÃüÌâ³ÉÁ¢£¬¼´xk+ykÄܱ»x+yÕû³ý
B£®¼ÙÉèn¡Ýk£¨k¡ÊN£©Ê±ÃüÌâ³ÉÁ¢£¬¼´xk+ykÄܱ»x+yÕû³ý
C£®¼ÙÉèn=2k+1£¨k¡ÊN*£©Ê±ÃüÌâ³ÉÁ¢£¬¼´x2k+1+y2k+1Äܱ»x+yÕû³ý
D£®¼ÙÉèn=2k-1£¨k¡ÊN*£©Ê±ÃüÌâ³ÉÁ¢£¬¼´x2k-1+y2k-1Äܱ»x+yÕû³ý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®¶¨Òå[X]±íʾ²»³¬¹ýXµÄ×î´óÕûÊý£®Éèn¡ÊN*£¬ÇÒM=£¨n+1£©2+n-[$\sqrt{£¨n+1£©^{2}+n+1}$]2£¬ÔòÏÂÁв»µÈʽºã³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®M2¡Ý2n+1B£®µ±n¡Ý2ʱ£¬2M¡Ý4n-2C£®M2¡Ý2n+1D£®µ±n¡Ý3ʱ£¬2M¡Ý2n+2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸