精英家教网 > 高中数学 > 题目详情
5.用数学归纳法证明“当n为奇数时,xn+yn能被x+y整除”,在验证n=1正确后,归纳假设应写成(  )
A.假设n=k(k∈N)时命题成立,即xk+yk能被x+y整除
B.假设n≥k(k∈N)时命题成立,即xk+yk能被x+y整除
C.假设n=2k+1(k∈N*)时命题成立,即x2k+1+y2k+1能被x+y整除
D.假设n=2k-1(k∈N*)时命题成立,即x2k-1+y2k-1能被x+y整除

分析 由于n为奇数,利用数学归纳法证明:当n为奇数时,xn+yn能被x+y整除时,可知第二步的假设与目标.

解答 解:用数学归纳法证明:n为奇数时,xn+yn能被x+y整除,
第一步,当n=1时,x1+y1=x+y能被x+y整除;
第二步,假设n=2k-1时,k∈N*时命题正确,再证明n=2k+1,k∈N*时命题正确.
故选:D.

点评 本题考查数学归纳法的应用,理解题意,把握“n为奇数”是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设数列{an}满足a1=1,a1+a2+…+an-1=an-1(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{an}满足logabn=an(a>1),求证:$\frac{a}{{a}^{2}-1}$≤$\frac{{b}_{1}}{{b}_{2}-1}$+$\frac{{b}_{2}}{{b}_{3}-1}$+…+$\frac{{b}_{n-1}}{{b}_{n}-1}$$<\frac{1}{a-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点F(1,0),点P为平面上的动点,过点P作直线l:x=-1的垂线,垂足为H,且$\overrightarrow{HP}$•$\overrightarrow{HF}$=$\overrightarrow{FP}$•$\overrightarrow{FH}$.
(1)求动点P的轨迹C的方程;
(2)设点P的轨迹C与x轴交于点M,点A,B是轨迹C上异于点M的不同D的两点,且满足$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,在A,B处分别作轨迹C的切线交于点N,求点N的轨迹E的方程;
(3)在(2)的条件下,求证:kMN•kAB为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若直线x+3y+m=0截半圆y=$\sqrt{25-{x}^{2}}$所得的弦长为8,则m=-3$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.正方体ABCD-A1B1C1D1,P、Q、R、S四点分别为AB、BC1、DD1、AD的中点,求证:P、Q、R、S四点共面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和Sn=$\frac{15}{8}n$+$\frac{3}{8}{n}^{2}$,{bn}为等差数列,且a1=b1与a2=a1(b2-b1),求{bn}的通项bn及其前12项的和 T12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)过点(1,$\frac{{\sqrt{3}}}{2}$),离心率为$\frac{{\sqrt{3}}}{2}$.过椭圆右顶点A的两条斜率乘积为-$\frac{1}{4}$的直线分别交椭圆C于M,N两点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)直线MN是否过定点D?若过定点D,求出点D的坐标;若不过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{{\begin{array}{l}{-{x^2}+x+k,x≤1}\\{-\frac{1}{2}+{{log}_{\frac{1}{3}}}x,x>1}\end{array}}$,g(x)=$\frac{x}{{{x^2}+1}}$(a∈R),若对任意的x1,x2∈{x|x∈R,x>-2},均有f(x1)≤g(x2),则实数k的取值范围是$({-∞,-\frac{3}{4}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合U={1,2,3,4,5},A={1,4},B={2,3},则A∩(∁uB)等于(  )
A.{1,4,5}B.{1,4}C.{4}D.{1,2,3,4}

查看答案和解析>>

同步练习册答案