精英家教网 > 高中数学 > 题目详情
设g(x)是定义在R上以1为周期的函数,若函数f(x)=x+g(x)在区间[3,4]时的值域为[-2,5],则f(x)在区间[2,5]上的值域为________.
[-3,6]
当x∈[2,3]时,x+1∈[3,4],所以f(x+1)=x+1+g(x+1)=x+1+g(x)∈[-2,5],所以f(x)=x+g(x)∈[-3,4];当x∈[4,5]时,x-1∈[3,4],所以f(x-1)=x-1+g(x-1)=x-1+g(x)∈[-2,5],所以f(x)=x+g(x)∈[-1,6],所以f(x)在区间[2,5]上的值域为[-3,6].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=a为常数且a∈(0,1).
(1)当a=时,求f
(2)若x0满足f[f(x0)]=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2
(3)对于(2)中的x1,x2,设A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)当,函数有且仅有一个零点,且时,求的值;
(Ⅱ)若函数在区间上为单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给定函数:①y=,②y=(x+1),③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数是____________.(填序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(x)=f()的所有x之和为(  )
A.-3B.3C.-8D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

f(x)=x3+log2,则不等式f(m)+f(m2-2)≥0(m∈R)成立的充要条件是________.(注:填写m的取值范围)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=e|xa|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ex-ex(x∈R且e为自然对数的底数).
(1)判断函数f(x)的奇偶性与单调性;
(2)是否存在实数t,使不等式f(xt)+f(x2t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若存在,使不等式成立,则实数的最小值为        .

查看答案和解析>>

同步练习册答案