精英家教网 > 高中数学 > 题目详情
20.设向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(x,3)且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.3D.-2

分析 根据题意,由向量垂直的性质可得若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则必有$\overrightarrow{a}$•$\overrightarrow{b}$=0,由平面向量的数量积公式可得2x+(-1)×3=0,解可得x的值,即可得答案.

解答 解:根据题意,若$\overrightarrow{a}$⊥$\overrightarrow{b}$,且$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(x,3),
则必有$\overrightarrow{a}$•$\overrightarrow{b}$=0,即2x+(-1)×3=0,
解可得x=$\frac{3}{2}$;
故选:B.

点评 本题考查平面向量数量积的运算,关键是掌握非零向量垂直与向量数量积之间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|x2+4x>0},B={x|x>m},若A∩B={x|x>0},则实数m的值可以是(  )
A.1B.2C.-1D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>b>0)与两条平行直线l1:y=x+a与l2:y=x-a相交所得的平行四边形的面积为6b2.则双曲线的离心率是(  )
A.$\sqrt{2}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线3x-y+1=0平行,F1、F2是双曲线C的左、右焦点,M是双曲线C上一点,且|MF1|=$\frac{3}{2}$|MF2|=6,则双曲线的焦距长为(  )
A.6B.2C.2$\sqrt{10}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点F作平行于渐近线的两直线与双曲线分别交于A、B两点,若|AB|=2a,则双曲线离心率e的值所在区间为(  )
A.(1,$\sqrt{2}$)B.($\sqrt{2}$,$\sqrt{3}$)C.($\sqrt{3}$,2)D.(2,$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=sin2x+4sinx+3(x∈R),则f(x)的最小值为(  )
A.3B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2+lnx的导数f′(x).
(1)求f(1)+f′(1);
(2)若曲线y=f(x)存在垂直于y轴的切线,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知3A${\;}_{x}^{3}$=$2{A}_{x+1}^{2}$$+6{A}_{x}^{2}$,则x等于(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是两个单位向量,且(2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)•(-2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$)=2$\sqrt{2}$-1,则$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案