精英家教网 > 高中数学 > 题目详情
16.(x-y)7的展开式中,系数绝对值最大的项是第四与第五项?

分析 Tr+1=${∁}_{7}^{r}$x7-r(-y)r,令$\left\{\begin{array}{l}{{∁}_{7}^{r}≥{∁}_{7}^{r+1}}\\{{∁}_{7}^{r}≥{∁}_{7}^{r-1}}\end{array}\right.$,解出即可得出.

解答 解:Tr+1=${∁}_{7}^{r}$x7-r(-y)r
令$\left\{\begin{array}{l}{{∁}_{7}^{r}≥{∁}_{7}^{r+1}}\\{{∁}_{7}^{r}≥{∁}_{7}^{r-1}}\end{array}\right.$,解得:3≤r≤4.
∴系数绝对值最大的项是第四与第五项.
故答案为:第四与第五项.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知a>0,若方程$\frac{a}{x-a}$=$\sqrt{4ax-2{x}^{2}}$有实数解,则实数a的取值范围为[$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若存在实数x0,使f(x0)=x0成立,则称x0为函数f(x)的不动点.己知函数f(x)=x3+ax2+x+b的图象关于点(p,0)对称,p>0,证明:“f(x)恰有一个零点”是“f(x)恰有一个不动点”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={x||x-1|≤a,a>0},B={x|x2-6x-7>0},且A∩B=∅,则a的取值范围是0<a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设命题p:?x>0,x>lnx.则¬p为(  )
A.?x>0,x≤lnxB.?x>0,x<lnxC.?x0>0,x0>lnx0D.?x0>0,x0≤lnx0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若定义域均为D的三个函数f(x),g(x),h(x)满足条件:?x∈D,点(x,g(x)) 与点(x,h(x))都关于点(x,f(x))对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=$\sqrt{1-{x}^{2}}$,f(x)=3x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是(  )
A.(-∞,-$\sqrt{10}$]B.[-$\sqrt{10}$,$\sqrt{10}$]C.[-3,$\sqrt{10}$]D.[$\sqrt{10}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知△ABC中,AC=2,AB=4,AC⊥BC,点P满足$\overrightarrow{AP}$=x$\overrightarrow{AC}$+y$\overrightarrow{AB}$,x+2y=1,则$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的最小值等于(  )
A.-2B.-$\frac{28}{9}$C.-$\frac{25}{8}$D.-$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{2^x},(x<1)\\ f(x-1),(x≥1)\end{array}$,则f(log29)的值为(  )
A.9B.$\frac{9}{2}$C.$\frac{9}{4}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a,b,c为三条不同的直线,α,β是两个不同的平面,则下列判断正确的是(  )
A.若a⊥b,b⊥c,则a⊥cB.若a∥α,b∥α,则a∥bC.若a∥α,b⊥α,则b∥αD.若a⊥α,α∥β,则a⊥β

查看答案和解析>>

同步练习册答案