精英家教网 > 高中数学 > 题目详情
8.已知△ABC中,AC=2,AB=4,AC⊥BC,点P满足$\overrightarrow{AP}$=x$\overrightarrow{AC}$+y$\overrightarrow{AB}$,x+2y=1,则$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的最小值等于(  )
A.-2B.-$\frac{28}{9}$C.-$\frac{25}{8}$D.-$\frac{7}{2}$

分析 根据AC⊥BC便可分别以CB,CA为x轴,y轴,建立平面直角坐标系,并可求出点A,B,C的坐标,可取AB的中点D,从而根据条件有$\overrightarrow{AP}=x\overrightarrow{AC}+2y\overrightarrow{AD}$,且x+2y=1,这样即可得出点P在直线CD上,可求出直线CD的方程为$y=\frac{\sqrt{3}}{3}x$,从而可以设$P(x,\frac{\sqrt{3}}{3}x)$,这样即可求出向量$\overrightarrow{PA},\overrightarrow{PB}+\overrightarrow{PC}$的坐标,进行向量数量积的坐标运算便可得出$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})=\frac{8}{3}{x}^{2}-\frac{10\sqrt{3}}{3}x$,配方即可求出该二次函数的最小值.

解答 解:分别以CB,CA为x,y轴,建立如图所示平面直角坐标系;
∵在Rt△ABC中,AC=2,AB=4,∴BC=$2\sqrt{3}$;
∴$A(0,2),B(2\sqrt{3},0)$,C(0,0);
取AB的中点D,则$\overrightarrow{AB}=2\overrightarrow{AD}$;
∴由$\overrightarrow{AP}=x\overrightarrow{AC}+y\overrightarrow{AB}$得,$\overrightarrow{AP}=x\overrightarrow{AC}+2y\overrightarrow{AD}$;
又x+2y=1;
∴C,P,D三点共线,即点P在直线CD上;
∵$D(\sqrt{3},1)$;
∴直线CD的方程为$y=\frac{\sqrt{3}}{3}x$;
∴设$P(x,\frac{\sqrt{3}}{3}x)$,则:$\overrightarrow{PA}=(-x,2-\frac{\sqrt{3}}{3}x)$,$\overrightarrow{PB}+\overrightarrow{PC}=(2\sqrt{3}-x,-\frac{\sqrt{3}}{3}x)+(-x,-\frac{\sqrt{3}}{3}x)$=$(2\sqrt{3}-2x,-\frac{2\sqrt{3}}{3}x)$;
∴$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$=$-x(2\sqrt{3}-2x)+\frac{2}{3}{x}^{2}$$-\frac{4\sqrt{3}}{3}x$
=$\frac{8}{3}{x}^{2}-\frac{10\sqrt{3}}{3}x$
=$\frac{8}{3}(x-\frac{5\sqrt{3}}{8})^{2}-\frac{25}{8}$;
∴$x=\frac{3\sqrt{3}}{8}$时,$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$取最小值$-\frac{25}{8}$.
故选:C.

点评 考查通过建立平面直角坐标系,利用向量坐标解决向量问题的方法,能求平面上点的坐标,中点坐标公式,直线的点斜式方程,根据点的坐标可求向量的坐标,以及向量数量积的坐标运算,知道当A,B,C三点共线的充要条件为$\overrightarrow{OB}=x\overrightarrow{OA}+y\overrightarrow{OC}$,且x+y=1,以及配方求二次函数最值的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知命题:“若a+b+c=0,则实数a,b,c中至少有一个不小于0”,用反证法证明该命题时的假设为(  )
A.假设a,b,c都小于0B.假设a,b,c中至少有一个不大于0
C.假设a,b,c中至多有一个不小于0D.假设a,b,c中至多有一个不大于0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图茎叶图记录了在一次数学模拟考试中甲、乙两组各五名学生的成绩(单位:分).已知甲组数据的中位数为106,乙组数据的平均数为105.4,则x,y的值分别为(  )
A.5,7B.6,8C.6,9D.8,8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(x-y)7的展开式中,系数绝对值最大的项是第四与第五项?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.中国天气网2016年3月4日晚六时通过手机发布的3月5日通州区天气预报的折线图(如图),其中上面的折线代表可能出现的最高气温,下面的折线代表可能出现的最低气温.
(Ⅰ)指出最高气温与最低气温的相关性;
(Ⅱ)比较最低气温与最高气温方差的大小(结论不要求证明);
(Ⅲ)在[8:00,23:00]内每个整点时刻的温差(最高气温与最低气温的差)依次记为t1,t2,t3,…,t16,求在连续两个时刻的温差中恰好有一个时刻的温差不小于3°的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.甲、乙两人在5次体育测试中成绩见下表,其中●表示一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为$\frac{4}{5}$.
8991908892
83879●8399

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.实数x,y满足条件$\left\{\begin{array}{l}2x-y≥0\\ x+y-4≥0\\ x≤3.\end{array}\right.$,则$\frac{y^2}{x^2}$的取值范围为(  )
A.[4,+∞)B.$[\frac{1}{3},2]$C.[0,4]D.$[\frac{1}{9},4]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}中,若a3+3a6+a9=120,则2a7-a8的值为(  )
A.24B.-24C.20D.-20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.正项等比数列{an}满足a1=1,a2a6+a3a5=128,则下列结论正确的是(  )
A.?n∈N*,anan+1≤an+2B.?n∈N*,an+an+2=2an+1
C.?n∈N*,Sn<an+1D.?n∈N*,an+an+3=an+1+an+2

查看答案和解析>>

同步练习册答案