精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,四边形是菱形, ,平面平面

在棱上运动.

(1)当在何处时, 平面

(2)已知的中点, 交于点,当平面时,求三棱锥的体积.

【答案】1)当中点时, 平面2

【解析】试题分析:1)设ACBD相交于点O,当MPD的中点时,可得:DM=MP,又四边形ABCD是菱形,可得:DO=OB,通过证明OMPB,可证PB∥平面MAC(2) 的中点, ...,点的中点, 到平面的距离为.由等积转化可得即得解.

试题解析:

(1)如图,设ACBD相交于点N ,
MPD的中点时,PB∥平面MAC,
证明:∵四边形ABCD是菱形,
可得:DN=NB,
又∵MPD的中点,可得:DM=MP,
∴NM为△BDP的中位线,可得:NM∥PB,
又∵NM平面MAC,PB平面MAC,
∴PB∥平面MAC.

2的中点,

.

.

.

,点的中点, 到平面的距离为.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知A,B,C为△ABC的三个内角,且其对边分别为a,b,c,若c2+b2+cb=a2
(1)求A;
(2)若a=2 ,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.

(1)求线段AP中点的轨迹方程;
(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:
①平面MENF⊥平面BDD′B′;
②当且仅当x= 时,四边形MENF的面积最小;
③四边形MENF周长l=f(x),x∈0,1]是单调函数;
④四棱锥C′﹣MENF的体积v=h(x)为常函数;
以上命题中真命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,a≠1,设p:函数y=loga(x+1)在(0,+∞)上单调递减;q:曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点.如果p且q为假命题,p或q为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形是正方形,是等边三角形,

(I)求证:

(II)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等差数列{an},满足|a10a11|>a10a11 , 且a102<a112 , Sn为其前n项和,则(
A.a8+a12>0
B.S1 , S2 , …S19都小于零,S10为Sn的最小值
C.a8+a13<0
D.S1 , S2 , …S20都小于零,S10为Sn的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代太极图是一种优美的对称图.如果一个函数的图像能够将圆的面积和周长分成两个相等的部分,我们称这样的函数为圆的“太极函数”.下列命题中错误命题的个数是( )

对于任意一个圆其对应的太极函数不唯一;

如果一个函数是两个圆的太极函数,那么这两个圆为同心圆;

的一个太极函数为

圆的太极函数均是中心对称图形;

奇函数都是太极函数;

偶函数不可能是太极函数.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步练习册答案