精英家教网 > 高中数学 > 题目详情
设f″(x)是函数y=f(x)的导函数f′(x)的导数,定义:若f(x)=ax3+bx2+cx+d(a≠0),且方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的对称中心.有同学发现“任何一个三次函数都有对称中心”,请你运用这一发现处理下列问题:设g(x)=
1
3
x3-
1
2
x2+3x-
5
12
,则
(1)函数g(x)的对称中心为
 

(2)g(
1
2015
)+g(
2
2015
)+g(
3
2015
)+…+g(
2014
2015
)=
 
考点:导数的运算
专题:导数的概念及应用
分析:(1)根据函数g(x)的解析式求出g′(x)和g″(x),令g″(x)=0,求得x的值,由此求得函数g(x)的对称中心.
(2)由导函数的导函数等于0求出x的值,可得g(x0)+f(1-x0)=y0+(2-y0)=2,从而得到g(
1
2015
)+g(
2
2015
)+g(
3
2015
)+…+g(
2014
2015
)的值.
解答: 解:(1)∵g(x)=
1
3
x3-
1
2
x2+3x-
5
12

又g′(x)=x2-x+3,g″(x)=2x-1,
令g″(x)=0得x=
1
2
,∴g(
1
2
)=
1
3
×(
1
2
)3-
1
2
×(
1
2
)2+3×
1
2
-
5
12
=1
故函数g(x)的对称中心为(
1
2
,1).
(2)设P(x0,y0)在g(x)上可知P关于对称点(
1
2
,1)的对称点g(1-x0,2-y0)也在函数g(x)上,
∴g(1-x0)=2-y0
∴g(x0)+g(1-x0)=y0+(2-y0)=2,
∵g(
1
2015
)+g(
2
2015
)+…+g(
2014
2015

=[g(
1
2015
)+g(
2014
2015
)]+…+[g(
2007
2015
)+g(
2008
2015
)]=2×1007=2014.
点评:本小题主要考查函数与导数等知识,考查化归与转化的数学思想方法,考查化简计算能力,函数的对称性的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}{bn}中,a 1=1,b1=2,且an+1+(-1)nan=bn,n∈N*,设数列{an}{bn}的前n项和分别为An和Bn
(1)若数列{an}是等差数列,求An和Bn
(2)若数列{bn}是公比q(q≠1)为等比数列:
    ①求A2013
    ②是否存在实数m,使A4n=m•a4n对任意自然数n∈N*都成立,若存在,求m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a1•a9=256,a4+a6=40,则公比q为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,a2=2,an+1•an=nλ,(λ为常数,n∈N*),则λ=
 
;a4=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)是定义在R上的增函数,数列{xn}是一个公差为2的等差数列,且满足f(x8)+f(x9)+f(x10)+f(x11)=0.则x2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若方程(
x2
4-k
)+y2=k表示椭圆,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,则
5i
1-2i
=(  )
A、2+iB、-2+i
C、2-iD、-2-i

查看答案和解析>>

科目:高中数学 来源: 题型:

若ax2+ax+a+3>0对一切实数x恒成立,则实数a的取值范围是(  )
A、( 0,+∞)
B、(-∞,-4)∪(0,+∞)
C、[0,+∞)
D、(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂为了扩大生产规模,计划重新建造一个面积为10000 m2的矩形新厂址,新厂址的长为x m,则宽为
10000
x
m,所建围墙ym,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y最短?

查看答案和解析>>

同步练习册答案