精英家教网 > 高中数学 > 题目详情
10.某小学为了解本校某年级女生的身高情况,从本校该年级的学生中随机选出100名女生并统计她们的身高(单位:cm),得到如图频率分布表:
分组(身高)[125,130)[130,135)[135,140)[140,145]
(Ⅰ)用分层抽样的方法从身高在[125,130)和[140,145]的女生中共抽取6人,则身高在[125,130)的女生应抽取几人?
(Ⅱ)在(Ⅰ)中抽取的6人中,再随机抽取2人,求这2人身高都在[125,130)内的概率.

分析 (Ⅰ)按照分层抽样的方法按比例求出身高在[125,130)的女生应抽取几人;
(Ⅱ)在(Ⅰ)中抽取的6名女生中,有4人身高在[125,130)中,2人身高在[140,145]中,问题为古典概型,列举基本事件,即可求出概率.

解答 解:(Ⅰ)身高在[125,130)内的女生应该抽取$\frac{20}{20+10}×6=4$人.
(Ⅱ)在(Ⅰ)中抽取的6名女生中,有4人身高在[125,130)中,2人身高在[140,145]中,记身高在[125,130)中的4人分别为a,b,c,d,身高在[140,145]中的2人分别为A,B.从这6人中随机抽取2人,基本事件包含(a,b),(a,c),(a,d),(a,A),(a,B),(b,c),(b,d),(b,A),(b,B),(c,d),(c,A),(c,B),(d,A),(d,B),(A,B),共有15个基本事件.
其中2人身高都在[125,130)内的情况有6种,
则2人身高都在[125,130)内的概率为$P=\frac{6}{15}=\frac{2}{5}$.

点评 本题考查频率分布直方图的基础知识,分层抽样,古典概型求解.融合了基本知识,难度不大,但是好题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.△ABC的内角A,B,C所对的边分别为a,b,c,向量$\overrightarrow m=({a,b+\frac{1}{2}c})$;$\overrightarrow n=({cosC,-1})$,若$\overrightarrow m⊥\overrightarrow n$
(I)求角A的大小
(II)若a=1,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,$a=2,b=4,C={30°},则\overrightarrow{BC}•\overrightarrow{CA}$=(  )
A.$4\sqrt{3}$B.4C.-4$\sqrt{3}$D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知复平面内平行四边形ABCD中,点A对应的复数为-1,$\overrightarrow{AB}$对应的复数为2+2i,$\overrightarrow{BC}$对应的复数为4-4i.
(Ⅰ)求D点对应的复数;
(Ⅱ)求平行四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.关于平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,下列结论正确的个数为(  )
①若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$;
②若$\overrightarrow{a}$=(1,k),$\overrightarrow{b}$=(-2,6),$\overrightarrow a$∥$\overrightarrow b$,则k=-3;
③非零向量$\overrightarrow{a}$和$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为30°;
④已知向量$\overrightarrow a=(1,2),\overrightarrow b=(1,1)$,且$\overrightarrow a$与$\overrightarrow a+λ\overrightarrow b$的夹角为锐角,则实数λ的取值范围是$λ>-\frac{5}{3}$.
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以下说法错误的是(  )
A.推理一般分为合情推理和演绎推理
B.归纳是从特殊到一般的过程,它属于合情推理
C.在数学中,证明命题的正确性既能用演绎推理又能用合情推理
D.演绎推理经常使用的是由大前提、小前提得到结论的三段论推理

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出如下“三段论”的推理过程:
因为对数函数y=logax(a>0且a≠1)是增函数,…大前提
而y=${log}_{\frac{1}{2}}x$是对数函数,…小前提
所以y=${log}_{\frac{1}{2}}x$是增函数,…结论
则下列说法正确的是(  )
A.推理形式错误B.大前提错误
C.小前提错误D.大前提和小前提都错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}为等差数列,满足$\overrightarrow{OA}={a_3}\overrightarrow{OB}+{a_{2016}}\overrightarrow{OC}$,其中A,B,C在一条直线上,O为直线AB外一点,记数列{an}的前n项和为Sn,则S2018的值为(  )
A.$\frac{2017}{2}$B.2017C.$\frac{2018}{2}$D.2018

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在圆x2+y2=9上任取一点P,过点P作y轴的垂线段PD,D为垂足,当P为圆与y轴交点时,P与D重合,动点M满足$\overrightarrow{DM}$=2$\overrightarrow{MP}$;
(1)求点M的轨迹C的方程;
(2)抛物线C′的顶点在坐标原点,并以曲线C在y轴正半轴上的顶点为焦点,直线y=x+3与抛物线C′交于A、B两点,求线段AB的长.

查看答案和解析>>

同步练习册答案