精英家教网 > 高中数学 > 题目详情
11.已知命题P:若三角形内切圆半径为r,三边长为a,b,c,则三角形的面积$S=\frac{1}{2}r(a+b+c)$.试根据命题P的启发,仿P写出关于四面体的一个命题Q:若四面体内切球半径为R,四个面的面积为S1,S2,S3,S4,则四面体的体积$V=\frac{1}{3}R({S_1}+{S_2}+{S_3}+{S_4})$.

分析 根据平面与空间之间的类比推理,由点类比点或直线,由直线 类比 直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.

解答 解:若四面体内切球半径为R,四个面的面积为S1,S2,S3,S4,则四面体的体积$V=\frac{1}{3}R({S_1}+{S_2}+{S_3}+{S_4})$.
故答案为若四面体内切球半径为R,四个面的面积为S1,S2,S3,S4,则四面体的体积$V=\frac{1}{3}R({S_1}+{S_2}+{S_3}+{S_4})$.

点评 类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某种产品的广告费用支出x(千元)与销售额y(10万元)之间有如下的对应数据:
x24568
y34657
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出销售额y关于费用支出x的线性回归方程$\stackrel{∧}{y}$=bx+a
不得禽流感得禽流感总计
服药
不服药
总计

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在一段时间内,某种商品的价格x(元)和某大型公司的需求量y(千件)之间的一组数据如表:
价格x8.28.610.011.311.9
需求量y6.27.58.08.59.8
根据上表可得回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=0.76,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$.据此估计,某种商品的价格为15元时,求其需求量约为多少千件?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知复数z满足|3+4i|+z=1+3i.
(Ⅰ)求$\overline{z}$;
(Ⅱ)求$\frac{(1+i)^{2}(3+4i)}{z}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.关于衡量两个变量y与x之间线性相关关系的相关系数r与相关指数R2中,下列说法中正确的是(  )
A.r越大,两变量的线性相关性越强B.R2越大,两变量的线性相关性越强
C.r的取值范围为(-∞,+∞)D.R2的取值范围为[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知某学校有1680名学生,现在采用系统抽样的方法抽取84人,调查他们对学校食堂的满意程度,将1680人,按1,2,3,…,1680随机编号,则在抽取的84人中,编号落在[61,160]内的人数为(  )
A.7B.5C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$y=sin({4x-\frac{π}{3}})$的图象的一条对称轴方程是(  )
A.$x=-\frac{11π}{24}$B.$x=\frac{π}{8}$C.$x=\frac{π}{4}$D.$x=\frac{11π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在各项都为正数的等比数列{an}中,已知a1=2,$a_{n+2}^2+4a_n^2=4a_{n+1}^2$,则数列{an}的通项公式an=${2}^{\frac{n+1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=log2(x+a)与g(x)=x2-(a+1)x-4(a+5)存在相同的零点,则a的值为(  )
A.4或-$\frac{5}{2}$B.4或-2C.5或-2D.6或-$\frac{5}{2}$

查看答案和解析>>

同步练习册答案