精英家教网 > 高中数学 > 题目详情
13.计算下列各式(式中字母都是正数):$(\root{4}{{b}^{-\frac{2}{3}}})^{-\frac{2}{3}}$(b>0)

分析 直接利用有理指数幂的运算法则求解即可.

解答 解:${(\root{4}{{b}^{-\frac{2}{3}}})}^{-\frac{2}{3}}$=$[{({b}^{-\frac{2}{3}})^{\frac{1}{4}}]}^{-\frac{2}{3}}$=${b}^{-\frac{2}{3}×\frac{1}{4}×(-\frac{2}{3})}$=${b}^{\frac{1}{9}}$.

点评 本题考查有理指数幂的运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.如图所示,已知AD为⊙O的直径,AB为⊙O的切线,割线BN的延长线交AD的延长线于点C,且BM=MN=NC,若AB=2,则该圆的直径AD的长为$\frac{5}{7}\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设集合A={x∈C|-3≤x≤4},集合B={x|m+1≤x<2m-1}.
(1)当C为自然数集N时,求A的真子集的个数;
(2)当C为实数集R时,且A∩B=∅,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}满足a1=2,an+1-an=3.
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若集合A={x|ax2-x+b=0}={-1},则实数对(a,b)组合的集合为{(-$\frac{1}{2}$,-$\frac{1}{2}$)}或{(0,-1)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知ABCD是正方形,PA⊥平面ABCD,BE⊥PC,E为垂足,求证:平面BDE⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求证:$\frac{ln2}{2}$+$\frac{ln3}{3}$+$\frac{ln4}{4}$+…+$\frac{lnn}{n}$<$\frac{{n}^{2}}{2(n+1)}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.二次函数y=-$\frac{3}{4}{x}^{2}$+$\frac{9}{4}$x+3的图象与x轴分别交于A,B两点,与y轴交于点C,连接BC,AC.
(1)求线段AB的长,∠ABC的正切值;
(2)若点Q是该二次函数图象位于线段AC右上方部分的一点,且△QAC的面积为△AOC面积的$\frac{3}{4}$,求点Q
的坐标;
(3)如图2,D是线段BC上一动点,连接AD,过点D作DE⊥x轴于点E,作DF⊥AC所在直线于点F,取AD的中点P,连接PE、PF,
①试问点D在线段BC上的运动过程中,∠EPF的大小是否改变?说明理由;
②连接EF,求△PEF周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题:
①sin2θ+cos2φ=1;
②同角三角函数的基本关系式中角α可以是任意角;
③六组诱导公式中的角α可以是任意角;
④诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”与α的大小无关;
⑤若sin(kπ-α)=$\frac{1}{3}$(k∈Z),则sinα=$\frac{1}{3}$.
其中正确的是(  )
A.①③B.C.②⑤D.④⑤

查看答案和解析>>

同步练习册答案