【题目】两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线
,
,和圆:
相切,则实数
的取值范围是( )
A.
或
B.
或![]()
C.
或
D.
或![]()
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且![]()
![]()
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,且四棱锥P-ABCD的体积为
,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,曲线
在原点处的切线为
.
(1)证明:曲线
与
轴正半轴有交点;
(2)设曲线
与
轴正半轴的交点为
,曲线在点
处的切线为直线
,求证:曲线
上的点都不在直线
的上方;
(3)若关于
的方程
(
为正实数)有不等实根
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,点
也为抛物线
的焦点.(1)若
为椭圆
上两点,且线段
的中点为
,求直线
的斜率;
(2)若过椭圆
的右焦点
作两条互相垂直的直线分别交椭圆于
和
,设线段
的长分别为
,证明
是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
,(
为参数),圆
的标准方程为
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系.
(1)求直线
和圆
的极坐标方程;
(2)若射线
与的交点为
,与圆
的交点为
,且点
恰好为线段
的中点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x>0,由不等式x+
≥2
=2,x+
=
≥3
=3,…,可以推出结论:x+
≥n+1(n∈N*),则a=( )
A.2n
B.3n
C.n2
D.nn
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com