精英家教网 > 高中数学 > 题目详情
14.已知数列{an}的前n项和Sn=2an-2n+1,数列{bn}满足bn=$\frac{{a}_{n}}{{2}^{n}}$
(1)证明:数列{bn}是等差数列
(2)求数列{bn}的通项公式
(3)求数列{an}的通项公式.

分析 (1)数列{an}的前n项和Sn=2an-2n+1,当n=1时,可得a1.当n≥2时,${S}_{n-1}=2{a}_{n-1}-{2}^{n}$,可得$\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}$=1,即可证明;
(2)由(1)与等差数列的通项公式可得:bn
(3)由(1)(2)可得:bn=$\frac{{a}_{n}}{{2}^{n}}$=n+1,即可得出an

解答 (1)证明:∵数列{an}的前n项和Sn=2an-2n+1
∴当n=1时,${a}_{1}=2{a}_{1}-{2}^{2}$,解得a1=4.
当n≥2时,${S}_{n-1}=2{a}_{n-1}-{2}^{n}$,
an=2an-2an-1-2n
化为${a}_{n}-2{a}_{n-1}={2}^{n}$,
∴$\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}$=1,
∵bn=$\frac{{a}_{n}}{{2}^{n}}$,
∴bn-bn-1=1,
∴数列{bn}是等差数列,首项为2,公差为1.
(2)解:由(1)可得:bn=2+(n-1)=n+1.
(3)解:由(1)(2)可得:bn=$\frac{{a}_{n}}{{2}^{n}}$=n+1,
∴an=(n+1)•2n

点评 本题考查了递推式的应用、等差数列的通项公式,考查了变形能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.曲线f(x)=(ax-1)lnx在x=1处的切线倾斜角为$\frac{π}{4}$,则a等于(  )
A.2B.3C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知在直三棱柱ABC-A1B1C1中,AB=AA1=2,∠ACB=$\frac{π}{3}$,点D是线段BC的中点.
(1)求证:A1C∥平面AB1D;
(2)当三棱柱ABC-A1B1C1的体积最大时,求直线A1D与平面AB1D所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知log147=a,log145=b,用a、b表示log3528.
(2)已知log189=a,18b=5,用a、b表示log3645.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线a?平面α,b?平面β,a∥b,则平面α与β的位置关系是(  )
A.平行B.相交C.平行或相交D.以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π,f(x)≤|f($\frac{π}{3}$)|,对一切x∈R恒成立,且f(π)>f(0)设x1、x2是集合{x|f(x)=0}中任意两个元素,且丨x1-x2丨的最小值为2π,则f(x)=(  )
A.sin(2x+$\frac{π}{3}$)B.sin($\frac{x}{2}+\frac{π}{3}$)C.sin(2π-$\frac{2π}{3}$)D.sin($\frac{x}{2}-\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A(-4,3)、B(2,5)、C(6,3)、D(-3,0)四点,若顺次连接A、B、C、D四点,试判定图形ABCD的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}$x2-f′(2)x,g(x)=lnx-$\frac{1}{2}$x2
(1)求函数f(x)的解析式;
(2)若对于任意x∈(0,+∞),都有f(x)+g(x)≤a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.由0,1,2,3,4,5组成的不重复的六位数中,不出现“135”与“24”的六位数个数为546.

查看答案和解析>>

同步练习册答案