精英家教网 > 高中数学 > 题目详情
7.一圆锥的侧面展开图恰好是一个半径为4的半圆,则圆锥的高等于2$\sqrt{3}$.

分析 根据圆锥的侧面展开图,即对应扇形的弧长是底面圆的周长,结合题意列出方程,求出底面的半径.

解答 解:设圆锥的底面半径为R,则由题意得,2πR=π×4,即R=2,
∴圆锥的高等于$\sqrt{16-4}$=2$\sqrt{3}$,
故答案为:2$\sqrt{3}$.

点评 本题考查了圆锥侧面展开图中弧长的等量关系,即由圆锥底面圆的圆周和展开图中弧长相等,列出方程进行求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在等比数列{an}中,3a5-a3a7=0,若数列{bn}为等差数列,且b5=a5,则{bn}的前9项的和S9为(  )
A.24B.25C.27D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,直线y=$\frac{\sqrt{5}}{3}$b与椭圆C交于A、B两点.若四边形ABF2F1是矩形,则椭圆C的离心率为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若曲线f(x)=x3-ax2+b在点(1,f(1))处切线的倾斜角为$\frac{3π}{4}$,则a等于(  )
A.2B.-2C.3D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知变量x,y满足$\left\{\begin{array}{l}x-3y+3≤0\\ x≥1\\ x+y-4≤0\end{array}\right.$则$\frac{x}{y}$的最大值是(  )
A.$\frac{9}{7}$B.3C.$\frac{3}{4}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系中,曲线C的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y=2sinα}\end{array}\right.$(α为参数),直线l的参数方程为$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$,(t为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为($\sqrt{3}$,$\frac{π}{2}$).
(1)求点P的直角坐标,并求曲线C的普通方程;
(2)设直线l与曲线C的两个交点为A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.
(1)求数列{an}与{bn}的通项公式;
(2)求Tn=a1b1+a2b2+…+anbn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.i是虚数单位,设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z满足$\frac{1-i}{\overline{z}}$=i(其中i为虚数单位),则z2=(  )
A.2iB.-2iC.2+2iD.2-2i

查看答案和解析>>

同步练习册答案