精英家教网 > 高中数学 > 题目详情
已知数列{a}中,a=2,前n项和为S,且S=.
(1)证明数列{an+1-an}是等差数列,并求出数列{an}的通项公式
(2)设bn=,数列{bn}的前n项和为Tn,求使不等式Tn>
对一切n∈N*都成立的最大正整数k的值
(Ⅰ)an=n(n∈N*) ;(Ⅱ)k的最大值为18;
(1)由题意,当n=1时,a1=S1=,则a1=1,a2=2,则a2-a1=1,
当n≥2时,an=Sn-Sn-1=-=[nan-(n-1)an-1+1]an+1=[(n+1)an+1-nan+1]      
则an+1-an=[(n+1)an+1-2nan+(n-1)an-1],
即(n-1)an+1-2(n-1)an+(n-1)an-1=0,
即an+1-2an+an-1="0,  " 即an+1-an=an-an-1
则数列{an+1-an}是首项为1,公差为0的等差数列.
从而an-an-1=1,,则数列{an}是首项为1,公差为1的等差数列,
所以,an=n(n∈N*)              
(2)bn===(- )
所以,Tn=b1+b2+…+bn=[(1-)+(-)+…+(-)]
=(1-)=                   
由于Tn+1-Tn=-=>0,
因此Tn单调递增,故Tn的最小值为T1=
令>,得k<19,所k的最大值为18
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列是首项为,公差为的等差数列,是首项为,公比为的等比数列,且满足,其中.
(Ⅰ)求a的值
(Ⅱ)若数列与数列有公共项,将所有公共项按原顺序排列后构成一个新数列,求数列的通项公式;
(Ⅲ)记(Ⅱ)中数列的前项之和为,求证:
.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知递增的等比数列的前三项之积为512,且这三项分别减去1,3,9后又成等差数列,求数列的通项公式,并求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地区发生流行性病毒感染,居住在该地区的居民必须服用一种药物预防,规定每人每天早晚八时各服一片,现知该药片每片含药量为220毫克,若人的肾脏每12小时从体内滤出这种药的60%,在体内的残留量超过386毫克,就将产生副作用.
(1) 某人上午八时第一次服药,问到第二天上午八时服完药时,这种药在他体内还残留多少?(2) 长期服用的人这种药会不会产生副作用?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等差数列的前n项和为,已知,则
A.38B.20C.10D.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设等差数列的最大值为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设有2009个人站成一排,从第一名开始1至3报数,凡报到3的就退出队伍,其余的向前靠拢站成新的一排,再按此规则继续进行,直到第p次报数后只剩下3人为止,试问最后剩下3人最初在什么位置?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:等差数列{}中,=14,前10项和
(1)求
(2)将{}中的第2项,第4项,…,第项按原来的顺序排成一个新数列,求此数列的前项和

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若等差数列的前n项和分别为,若对一切正整数n都有=,则的值为      .

查看答案和解析>>

同步练习册答案