精英家教网 > 高中数学 > 题目详情
4.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,-4)且$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.-10B.10C.-$\sqrt{5}$D.$\sqrt{5}$

分析 利用共线向量求出x,然后利用数量积求解即可.

解答 解:$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,-4)且$\overrightarrow{a}$∥$\overrightarrow{b}$,
可得2x=-4,解得x=-2,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=-2--8=-10.
故选:A.

点评 本题考查向量的共线以及数量积的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在△ABC中,D为边AC上一点,AB=AC=6,AD=4,若△ABC的外心恰在线段BD上,则BD=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a、b、c分别是△ABC的三个内角∠A、∠B、∠C的对边,且acosC+$\sqrt{3}$asinC-b-c=0.
(1)求∠A;
(2)若a=2,△ABC的面积为$\sqrt{3}$,求b、c;
(3)若a=2,求b+c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.3个实数a,b,c成等差数列,且a+b+c=81,又14-c,b+1,a+2也成等差数列,求a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.马璐、高静两位同学设计了一个画圆内接正三角形的方法:
(1)如图,作直径AD;
(2)作半径OD的垂直平分线,交⊙O于B、C两点;
(3)连接AB、AC、BC,那么△ABC为所求的三角形.
请你判断两位同学的作法是否正确,如果正确,请你按照两位同学设计的画法,画出△ABC,然后给出△ABC是等边三角形的证明过程;如果不正确,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设全集为Z,A={x|x2+2x-15=0},B={x|ax-1=0}.
(1)若a=$\frac{1}{5}$,求A∩(∁ZB);
(2)若B⊆A,求实数a的取值组成的集合C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果一个点是一个指数函数的图象与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M(1,1),N(2,1),Q(2,2),C(2,$\frac{1}{2}$)中,“好点”的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.关于函数f(x)=2sin(3x-$\frac{3π}{4}$),有下列命题:
①其最小正周期是$\frac{2π}{3}$;
②其表达式可改写为y=2cos(3x-$\frac{π}{4}$);
③在x∈[$\frac{π}{12}$,$\frac{5π}{12}$]上为增函数,
其中正确的命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的周期和最大值、最小值:
(1)y=1+sin2x;
(2)y=2sinx-3cosx;
(3)y=cos2x-cos4x;
(4)y=cos4x-sin4x.

查看答案和解析>>

同步练习册答案