精英家教网 > 高中数学 > 题目详情
执行如图的程序框图,输出i的值为
 

考点:程序框图
专题:计算题,算法和程序框图
分析:算法的功能是求满足S=1+2×2+22×3+…+2i-1×i>100的最小正整数i的值,验证S>100时,求得最小正整数i的值.
解答: 解:由程序框图知:算法的功能是求满足S=1+2×2+22×3+…+2i-1×i>100的最小正整数i的值,
∵S=1+2×2+22×3+23×4=49,S=1+2×2+22×3+23×4+24×5=129>100,
∴输出i=5.
故答案为:5.
点评:本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C的方程为x2-
y2
3
=1,直线l是双曲线C的右准线,F1、F2是双曲线C的左、右焦点,点P在双曲线C上,d为点P到直线l的距离,若|PF1|=2|PF2|2,则
|PF 1|
d
的值是(  )
A、2
B、
3
C、
17
-1
D、
17
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx.
(Ⅰ)若函数h(x)=f(x)+
1
2
x2-ax在点(1,h(1))处的切线与直线4x-y+1=0平行,求实数a的值
(Ⅱ)对任意的a∈[-1,0),若不等式f(x)<
1
2
ax2+2x+b在x∈(0,1]上恒成立,求实数b的取值范围
(Ⅲ)若函数y=g(x)与y=f(x)的图象关于直线y=x对称,设A(a,g(a)),B(b,g(b)),N=(
a+b
2
,g(
a+b
2
))(a<b),试根据如图所示的曲边梯形ABCD的面积与两个直角梯形ADMN和NMCB的面积的大小关系,写出一个关于a和b的不等式,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x
x+1
,数列{an}的首项a1=
2
3
,且满足an+1=f(an),(n∈N*
(Ⅰ)令bn=
1
an
-1,求证:数列{bn}是等比数列;
(Ⅱ)令cn=
n
an
,求数列{cn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z1=a+i,z2=1-i(i为虚数单位),且z1•z2为纯虚数,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠BAD=45°,AD=1,AB=
2
,△PAD是正三角形,平面PAD⊥平面PBD.
(Ⅰ)求证:PA⊥BD;
(Ⅱ)设二面角P-BD-A的大小为α,直线PA与平面PBC所成角的大小为β,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+2
a
x-b+4=0(*),
(Ⅰ)两次抛掷一枚质地均匀的骰子,第一、二次得到的点数分别记为a,b,求使方程(*)有解的概率;
(Ⅱ)在区间[0,6]上分别任意取两个值作为a,b的值,求使方程(*)有解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4.2,则小白得5分的概率至少为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bsinx+c是奇函数,若g(x)=f(x)+4,g(1)=2,则f(-1)的值是
 

查看答案和解析>>

同步练习册答案