精英家教网 > 高中数学 > 题目详情
在极坐标系中,圆ρ=4cosθ的垂直于极轴的两条切线方程分别为(  )
A、θ=0(ρ∈R)和ρcosθ=4
B、θ=
π
2
(ρ∈R)和ρcosθ=4
C、θ=0(ρ∈R)和ρcosθ=2
D、θ=
π
2
(ρ∈R)和ρcosθ=2
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:把圆的极坐标方程化为直角坐标方程,求出它的两条垂直于极轴的切线方程,再化为极坐标方程.
解答: 解:圆ρ=4cosθ即 ρ2=4ρcosθ,化为直角坐标方程为 (x-2)2+y2=4,
表示以(2,0)为圆心、半径等于2的圆,由此可得垂直于极轴的两条切线方程分别为x=0、x=4,
再化为极坐标方程为 θ=
π
2
(ρ∈R)和ρcosθ=4,
故选:B.
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,把直角坐标方程化为极坐标方程的方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

三个数a,b,c成等比数列,且a+b+c=m(m>0),则b的取值范围是(  )
A、[0,
m
3
]
B、[-m,-
m
3
]
C、(0,
m
3
D、[-m,0)∪(0,
m
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

若cos2α=
7
8
,α∈(
4
,π),则sinα等于(  )
A、
3
16
B、
1
4
C、
15
8
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中特称命题的个数是(  )
(1)有些三角形是等腰三角形              
(2)?x∈Z,x2-2x-3=0
(3)存在一个三角形,它的内角和是170°   
(4)矩形都是平行四边形.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3+x-3的零点落在的区间是(  )
A、[0,1]
B、[1,2]
C、[2,3]
D、[3,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG是边长为2的等边三角形,则f(-1)的值为(  )
A、-
3
2
B、-
6
2
C、
3
D、-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a1=1,an=an-1+3n-1,求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△SCD中,SD=3,CD=
5
,cos∠SCD=-
1
5
5
,SA=2AD,AB⊥SD交SC于B,M为SB上点,且SM=2MB,将△SAB沿AB折起,使平面SAB⊥平面ABCD

(Ⅰ)求证:AM∥平面SCD;
(Ⅱ)设点N是直线CD上的点,且
DN
=
1
2
NC
,求MN与平面SCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
(a>0).
(1)当a=1,求f(x)在(2,2+△x)上的平均变化率;
(2)当a=4,求其斜率为0的切线方程;
(3)求证:“对勾函数”图象上的各点处切线的斜率小于1.

查看答案和解析>>

同步练习册答案