20£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÔ²CµÄÔ²ÐÄ×ø±êΪ£¨2£¬0£©£¬°ë¾¶Îª$\sqrt{2}$£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}x=-t\\ y=1+t\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨1£©ÇóÔ²CºÍÖ±ÏßlµÄ¼«×ø±ê·½³Ì£»
£¨2£©µãPµÄ¼«×ø±êΪ£¨1£¬$\frac{¦Ð}{2}$£©£¬Ö±ÏßlÓëÔ²CÏཻÓÚA£¬B£¬Çó|PA|+|PB|µÄÖµ£®

·ÖÎö £¨1£©$\left\{\begin{array}{l}x=¦Ñcos¦È\\ y=¦Ñsin¦È\end{array}\right.$´úÈëÔ²CµÃÔ²CµÄ¼«×ø±ê·½³Ì£»Ö±ÏßlµÄ²ÎÊý·½³Ìת»¯³ÉÆÕͨ·½³Ì£¬½ø¶øÇóµÃÖ±ÏßlµÄ¼«×ø±ê·½³Ì£»
£¨2£©½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²µÄ·½³Ì£¬ÇóµÃ¹ØÓÚtµÄÒ»Ôª¶þ´Î·½³Ì£¬ÁîA£¬B¶ÔÓ¦²ÎÊý·Ö±ðΪt1£¬t2£¬¸ù¾ÝΤ´ï¶¨Àí¡¢Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬¼´¿ÉÇóµÃ|PA|+|PB|µÄÖµ£®

½â´ð ½â£º£¨1£©Ô²CµÄÖ±½Ç×ø±ê·½³ÌΪ£¨x-2£©2+y2=2£¬
$\left\{\begin{array}{l}x=¦Ñcos¦È\\ y=¦Ñsin¦È\end{array}\right.$´úÈëÔ²CµÃ£º£¨¦Ñcos¦È-2£©2+¦Ñ2sin2¦È=2
»¯¼òµÃÔ²CµÄ¼«×ø±ê·½³Ì£º¦Ñ2-4¦Ñcos¦È+2=0¡­£¨3·Ö£©
ÓÉ$l£º\left\{\begin{array}{l}x=-t\\ y=1+t\end{array}\right.$µÃx+y=1£¬¡àlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos¦È+¦Ñsin¦È=1¡­£¨5·Ö£©
£¨2£©ÓÉ$P£¨1£¬\frac{¦Ð}{2}£©$µÃµãPµÄÖ±½Ç×ø±êΪP£¨0£¬1£©£¬
¡àÖ±ÏßlµÄ²ÎÊýµÄ±ê×¼·½³Ì¿Éд³É$\left\{\begin{array}{l}x=-\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}\right.£¨tΪ²ÎÊý£©$¡­£¨6·Ö£©
´úÈëÔ²CµÃ£º$£¨-\frac{{\sqrt{2}}}{2}t-2{£©^2}+{£¨1+\frac{{\sqrt{2}}}{2}t£©^2}=2$
»¯¼òµÃ£º${t^2}+3\sqrt{2}t+3=0$£¬
¡à$\left\{\begin{array}{l}{t_1}+{t_2}=-3\sqrt{2}\\{t_1}•{t_2}=3\end{array}\right.$£¬¡àt1£¼0£¬t2£¼0¡­£¨8·Ö£©
¡à$|{PA}|+|{PB}|=|{t_1}|+|{t_2}|=-£¨{{t_1}+{t_2}}£©=3\sqrt{2}$¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÔ²µÄ¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»»£¬Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬¿¼²é·ÖÎöÎÊÌâ¼°½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®»¯¼ò£º$\frac{5}{6}$a${\;}^{\frac{1}{2}}$b${\;}^{-\frac{1}{2}}$¡Á£¨-3a${\;}^{\frac{1}{6}}$b-1£©¡Â£¨4a${\;}^{\frac{2}{3}}$b-3£©${\;}^{\frac{1}{2}}$=-$\frac{5}{4}$${a}^{\frac{1}{3}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{x}^{2}}{1+{x}^{2}}$£¬
£¨1£©Çóf£¨2£©Óëf£¨$\frac{1}{2}$£©£¬f£¨3£©Óëf£¨$\frac{1}{3}$£©£»
£¨2£©ÓÉ£¨1£©ÖÐÇóµÃµÄ½á¹û£¬ÄãÄÜ·¢ÏÖf£¨x£©Óëf£¨$\frac{1}{x}$£©ÓÐʲô¹ØÏµ£¿²¢Ö¤Ã÷ÄãµÄ·¢ÏÖ£»
£¨3£©¼ÆËãf£¨1£©+f£¨2£©+f£¨3£©+¡­+f£¨2006£©+f£¨$\frac{1}{2}$£©+f£¨$\frac{1}{3}$£©+¡­+f£¨$\frac{1}{2016}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÈçͼËùʾ£¬Éè A£¬B£¬C£¬DÊDz»¹²ÃæµÄËĵ㣬P£¬Q£¬R£¬S·Ö±ðÊÇAC£¬BC£¬BD£¬ADµÄÖе㣬ÈôAB=12$\sqrt{2}$£¬CD=4$\sqrt{3}$£¬ÇÒËıßÐÎPQRSµÄÃæ»ýÊÇ12$\sqrt{3}$£¬
£¨1£©ÇóÖ¤£ºS£¬R£¬Q£¬PËÄµã¹²Ãæ£®
£¨2£©ÇóÒìÃæÖ±ÏßABºÍCDËù³É½ÇµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®¹ØÓÚÖ±Ïßa£¬bÒÔ¼°Æ½ÃæM£¬N£¬ÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èôa¡ÎM£¬b¡ÎM£¬Ôòa¡ÎbB£®Èôa¡ÎM£¬b¡Ía£¬Ôòb¡ÍM
C£®Èôb?M£¬ÇÒb¡Ía£¬Ôòa¡ÍMD£®Èôa¡ÍM£¬a¡ÎN£¬Ôò M¡ÍN

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®É輯ºÏA={x|£¨x+1£©£¨2-x£©£¾0}£¬¼¯ºÏB={x|1¡Üx¡Ü3}£¬ÔòA¡ÈB=£¨¡¡¡¡£©
A£®£¨-1£¬3]B£®£¨-1£¬1]C£®£¨1£¬2£©D£®£¨-1£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ$2¦Ð+\frac{4}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬Èç¹û$\frac{sinB}{sinA}$£¬$\frac{sinC}{sinA}$£¬$\frac{cosB}{cosA}$³ÉµÈ²îÊýÁУ¬ÄÇô½ÇAµÄֵΪ$\frac{¦Ð}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¹«²îΪ2£¬Èôa1£¬a2£¬a4³ÉµÈ±ÈÊýÁУ¬ÄÇôa4µÈÓÚ£¨¡¡¡¡£©
A£®-1B£®1C£®-2D£®8

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸