精英家教网 > 高中数学 > 题目详情
16.设函数f(x)=sinx-cosx+x+1.
(Ⅰ)当x∈[0,2π],求函数f(x)的单调区间与极值;
(Ⅱ)若函数y=f(x)-ax在[0,π]上是增函数,求实数a的取值范围.

分析 (I)求解得出f′(x)=1+$\sqrt{2}$sin(x+$\frac{π}{4}$),列表判断单调性,极值.
(II)由y=f(x)-ax=sinx-cosx+x+1-ax,x∈[0,π]是增函数,
知y′=cosx+sinx=1-a≥0恒成立,根据[0,π]上,利用三角函数性质判处最值即可判断.

解答 解:(Ⅰ)由f(x)=sinx-cosx+x+1,x∈[0,2π],
知 f′(x)=1+$\sqrt{2}$sin(x+$\frac{π}{4}$)
令f′(x)=0从而sin(x+$\frac{π}{4}$)=$-\frac{\sqrt{2}}{2}$得x=π或x=$\frac{3π}{2}$

x(0,π)π(π,$\frac{3π}{2}$)$\frac{3π}{2}$($\frac{3π}{2}$,2π)
f′(x)+0-0+
f(x)单调递增π+2单调递减$\frac{3π}{2}$单调递增
因此,由上表知f(x)的单调递增区间是(0,π)与($\frac{3π}{2}$,2π),
单调递减区间是(π),$\frac{3π}{2}$,),极小值为f(π)=π+2
(Ⅱ)由y=f(x)-ax=sinx-cosx+x+1-ax,x∈[0,π]是增函数,
知y′=cosx+sinx+1-a≥0恒成立,
即a-1≤cosx+sinx=$\sqrt{2}$sin(x+$\frac{π}{4}$)恒成立,
∵x∈[0,π],$\frac{π}{4}$≤x+$\frac{π}{4}$≤$\frac{5π}{4}$,
∴$-\frac{\sqrt{2}}{2}$≤sin(x$+\frac{π}{4}$)≤1,
-1≤$\sqrt{2}$sin(x$+\frac{π}{4}$)≤$\sqrt{2}$
只需a-1≤-1成立,即a≤0.

点评 本题综合考查了导数在解决函数最值,单调性中的运用,考查了综合运用知识的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.给定椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),称圆x2+y2=a2+b2为椭圆E的“伴随圆”.
已知椭圆E中b=1,离心率为$\frac{\sqrt{6}}{3}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若直线l与椭圆E交于A,B两点,与其“伴随圆”交于C,D两点,当|CD|=$\sqrt{13}$时,求弦长|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设f(x)=x-alnx.(a≠0)
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)≥a2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xoy中,点P到两点$(-2\sqrt{2},0)$、$(2\sqrt{2},0)$的距离之和等于6,设点P的轨迹为曲线C,直线x-my-1=0与曲线C交于A、B两点.
(Ⅰ)求曲线C的方程;
(Ⅱ)若以线段AB为直径的圆过坐标原点,求m的值;
(Ⅲ)当实数m取何值时,△AOB的面积最大,并求出面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l与圆C:x2+y2+2x-4y+a=0相交于A,B两点,弦AB的中点为M(0,1).
(1)求实数a的取值范围以及直线l的方程;
(2)若以$\overrightarrow{AB}$为直径的圆过原点O,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xex-5.
(1)试求函数f(x)的单调区间及最值
(2)设函数g(x)=|f(x-3)+5|,若方程[g(x)]2+tg(x)+1=0(t∈R)有四个实数根,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C的参数方程为$\left\{\begin{array}{l}x=-2+\sqrt{10}cosα\\ y=\sqrt{10}sinα\end{array}\right.$(α为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$ρcos({θ-\frac{π}{4}})=2\sqrt{2}$
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)设点P是曲线C上的一个动点,求它到直线l的距离d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知三棱锥A-BCD,E、F、G、H分别是AB、BC、CD、DA的中点,若AC=BD,则四边形EFGH为(  )
A.梯形B.矩形C.菱形D.正方形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A(x1,y1),B(x2,y2)是抛物线y2=x上相异的两点,且在x轴同侧,点C(1,0).若直线AC,BC的斜率互为相反数,则y1y2等于(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案