8£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-2+\sqrt{10}cos¦Á\\ y=\sqrt{10}sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦Ñcos£¨{¦È-\frac{¦Ð}{4}}£©=2\sqrt{2}$
£¨1£©ÇóÇúÏßCµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèµãPÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëdµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-2+\sqrt{10}cos¦Á\\ y=\sqrt{10}sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÆÕͨ·½³Ì£®Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦Ñcos£¨{¦È-\frac{¦Ð}{4}}£©=2\sqrt{2}$£¬Õ¹¿ª¿ÉµÃ£º$\frac{\sqrt{2}}{2}$¦Ñ£¨cos¦È+sin¦È£©=2$\sqrt{2}$£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®£®
£¨2£©ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃÔ²ÐÄ£¨-2£¬0£©µ½Ö±ÏߵľàÀëd£¬¿ÉµÃµãPµ½Ö±ÏßlµÄ¾àÀëdµÄȡֵ·¶Î§ÊÇ[d-r£¬d+r]£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-2+\sqrt{10}cos¦Á\\ y=\sqrt{10}sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬
ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃ£º£¨x+2£©2+y2=10£®
Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦Ñcos£¨{¦È-\frac{¦Ð}{4}}£©=2\sqrt{2}$£¬
Õ¹¿ª¿ÉµÃ£º$\frac{\sqrt{2}}{2}$¦Ñ£¨cos¦È+sin¦È£©=2$\sqrt{2}$£¬¿ÉµÃÖ±½Ç×ø±ê·½³Ì£ºx+y-4=0£»
£¨2£©Ô²ÐÄ£¨-2£¬0£©µ½Ö±ÏߵľàÀëd=$\frac{|-2+0-4|}{\sqrt{2}}$=3$\sqrt{2}$£®
¡àµãPµ½Ö±ÏßlµÄ¾àÀëdµÄȡֵ·¶Î§ÊÇ$[3\sqrt{2}-\sqrt{10}£¬3\sqrt{2}+\sqrt{10}]$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®¸ø¶¨ÕýÆæÊýn£¬ÊýÁÐ{an}£ºa1£¬a2£¬¡­£¬anÊÇ1£¬2£¬¡­£¬nµÄÒ»¸öÅÅÁУ¬¶¨ÒåE£¨a1£¬a2£¬¡­£¬an£©=|a1-1|+|a2-2|+¡­+|an-n|ΪÊýÁÐ{an}£ºa1£¬a2£¬¡­£¬anµÄλ²îºÍ£®
£¨¢ñ£©µ±n=5ʱ£¬ÔòÊýÁÐ{an}£º1£¬3£¬4£¬2£¬5µÄλ²îºÍΪ4£»
£¨¢ò£©Èôλ²îºÍE£¨a1£¬a2£¬¡­£¬an£©=4£¬ÔòÂú×ãÌõ¼þµÄÊýÁÐ{an}£ºa1£¬a2£¬¡­£¬anµÄ¸öÊýΪ$\frac{{£¨{n-2}£©£¨{n+3}£©}}{2}$£®£»£¨ÓÃn±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÔ²$C£º{£¨x+\sqrt{3}£©^2}+{y^2}=16£¬µãA£¨\sqrt{3}£¬0£©$£¬QÊÇÔ²ÉÏÒ»¶¯µã£¬AQµÄ´¹Ö±Æ½·ÖÏß½»CQÓÚµãM£¬ÉèµãMµÄ¹ì¼£ÎªE£®
£¨I£©Çó¹ì¼£EµÄ·½³Ì£»
£¨II£©¹ýµãA×÷Ô²x2+y2=1µÄÇÐÏßl½»¹ì¼£EÓÚB£¬DÁ½µã£¬Çó|BD|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®É躯Êýf£¨x£©=sinx-cosx+x+1£®
£¨¢ñ£©µ±x¡Ê[0£¬2¦Ð]£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼äÓ뼫ֵ£»
£¨¢ò£©Èôº¯Êýy=f£¨x£©-axÔÚ[0£¬¦Ð]ÉÏÊÇÔöº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¬£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$e=\frac{1}{2}$£¬Ö±Ïßx+2y-1=0¾­¹ýÍÖÔ²µÄÒ»¸ö½¹µã£»
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©¹ýÍÖÔ²ÓÒ½¹µãFµÄÖ±Ïßl£¨Óë×ø±êÖá¾ù²»´¹Ö±£©½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬µãB¹ØÓÚxÖáµÄ¶Ô³ÆµãΪP£»ÎÊÖ±ÏßAPÊÇ·ñºã¹ý¶¨µã£¿ÈôÊÇ£¬Çó³ö¶¨µã×ø±ê£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÅ×ÎïÏßy2=-6xµÄ½¹µãΪF£¬µãM£¬NÔÚÅ×ÎïÏßÉÏ£¬ÇÒÂú×ã$\overrightarrow{FM}=k\overrightarrow{FN}£¨k¡Ù0£©$£¬Ôò|MN|µÄ×îСֵ6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Ö±Ïß2x-y+1=0ÓëÔ²C£º£¨x-1£©2+£¨y-1£©2=1ÏཻÓÚA¡¢BÁ½µã£¬ÔòÏÒABµÄ³¤Îª$\frac{{2\sqrt{5}}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÈôÖ±Ïßl±»Ô²x2+y2=4Ëù½ØµÃµÄÏÒ³¤²»Ð¡ÓÚ$2\sqrt{3}$£¬ÔòlÓëÏÂÁÐÇúÏßÒ»¶¨Óй«¹²µãµÄÊÇ£¨¡¡¡¡£©
A£®$\frac{x^2}{2}+{y^2}=1$B£®£¨x-1£©2+y2=1C£®y=x2D£®x2-y2=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªx1£¬x2£¨x1£¼x2£©ÊǺ¯Êýf£¨x£©=lnx-$\frac{1}{x-1}$µÄÁ½¸öÁãµã£¬Èôa¡Ê£¨x1£¬1£©£¬b¡Ê£¨1£¬x2£©£¬Ôò£¨¡¡¡¡£©
A£®f£¨a£©£¼0£¬f£¨b£©£¼0B£®f£¨a£©£¾0£¬f£¨b£©£¾0C£®f£¨a£©£¾0£¬f£¨b£©£¼0D£®f£¨a£©£¼0£¬f£¨b£©£¾0

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸