分析 (1)由已知利用等差数列的性质可求b=2,由余弦定理可得ac=4,利用三角形面积公式即可求值得解.
(2)设AD=CD=d,由cos∠ADB+cos∠CDB=0,结合余弦定理可得BD2=$\frac{{a}^{2}+{c}^{2}}{2}$-d2=8-ac-d2,又利用余弦定理可得4d2=16-3ac,从而解得d2=4-$\frac{3ac}{4}$,利用基本不等式可得:BD2=4-$\frac{ac}{4}$≥4-$\frac{1}{4}$($\frac{a+c}{2}$)2=3,即可得解.
解答
解:(1)因为a,b,c成等差数列,a+c=4.
所以b=$\frac{a+c}{2}$=2,…(2分)
由余弦定理,得b2=a2+c2-2accosB=(a+c)2-3ac=16-3ac=4,解得ac=4,…(6分
从而S△ABC=$\frac{1}{2}$acsinB=2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.…(8分)⇒
(2)因为D为AC边的中点,所以可设AD=CD=d,
由cos∠ADB+cos∠CDB=0,得$\frac{B{D}^{2}+{d}^{2}-{c}^{2}}{2d•BD}$+$\frac{B{D}^{2}+{d}^{2}-{a}^{2}}{2d•BD}$=0,
即BD2=$\frac{{a}^{2}+{c}^{2}}{2}$-d2=8-ac-d2,…(10分)
又因为b2=a2+c2-2accosB=(a+c)2-3ac=16-3ac,
即4d2=16-3ac,
所以d2=4-$\frac{3ac}{4}$,…(12分)
故BD2=4-$\frac{ac}{4}$≥4-$\frac{1}{4}$($\frac{a+c}{2}$)2=3,当且仅当a=c时取等号,
所以线段BD长的最小值为$\sqrt{3}$.…(14分)
点评 本题主要考查了等差数列的性质,余弦定理,三角形面积公式,基本不等式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {0,2,3} | B. | {1,2,3} | C. | {0,1,2} | D. | {0,1,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{π}{12},0)$ | B. | $(\frac{π}{3},-\frac{1}{4})$ | C. | $(\frac{π}{3},0)$ | D. | $(\frac{7π}{24},0)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 67 | B. | 68 | C. | 69 | D. | 70 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | [2,+∞) | C. | (-∞,2) | D. | (0,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com