【题目】先阅读下列不等式的证法,再解决后面的问题:
已知
,
,求证:
.
证明:构造函数
,
即![]()
.
因为对一切
,恒有
,
所以
,从而得
.
(1)若
,
,请写出上述结论的推广式;
(2)参考上述证法,对你推广的结论加以证明.
科目:高中数学 来源: 题型:
【题目】如图所示,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其它各面用钢筋网围成.
(1)现有可围
长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?
(2)若使每间虎笼面积为
,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,将圆
上每一点的横坐标保持不变,纵坐标变为原来的
倍,再把所得曲线上每一点向下平移1个单位得到曲线
.以
为极点,以
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程是
.
(1)写出
的参数方程和
的直角坐标方程;
(2)设点
在
上,点
在
上,求使
取最小值时点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系 xOy 中,已知椭圆 C:
的离心率为
,且过点 (
,
),点 P 在第四象限, A 为左顶点, B 为上顶点, PA 交 y 轴于点 C,PB 交 x 轴于点 D.
![]()
(1) 求椭圆 C 的标准方程;
(2) 求 △PCD 面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新个税法于2019年1月1日进行实施.为了调查国企员工对新个税法的满意程度,研究人员在
地各个国企中随机抽取了1000名员工进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中
.
![]()
(1)求
的值并估计被调查的员工的满意程度的中位数;(计算结果保留两位小数)
(2)若按照分层抽样从
,
中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为自然对数的底数).
(Ⅰ)若函数
的图象在
处的切线为
,当实数
变化时,求证:直线
经过定点;
(Ⅱ)若函数
有两个极值点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在原点,焦点在坐标轴上,且经过
,
.
(Ⅰ)求椭圆的标准方程和离心率;
(Ⅱ)四边形
的四个顶点都在椭圆
上,且对角线
,
过原点
,若
,求证:四边形
的面积为定值,并求出此定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com