精英家教网 > 高中数学 > 题目详情
4.已知命题p:对任意实数x都有x2+ax+a>0恒成立;
命题q:关于x的方程x2-x+a=0有实数根;
如果“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.

分析 先分别求得p为真命题,q为真命题时,a的范围,再根据命题p或q为真命题,p且q为假命题,可得p和q有且只有一个是真命题,从而分p真q假,p假 q真,分别求得a的范围,最后求出它们的并集即可.

解答 解:对任意实数x都有x2+ax+a>0恒成立?△<0?0<a<4
命题p:?0<a<4…(2分)
关于x的方程x2-x+a=0有实数根?△≥0?1-4a≥0?a≤$\frac{1}{4}$;
命题q:$?a≤\frac{1}{4}$…(4分)
∵“p或q”为真命题,“p且q”为假命题,
∴p与q一真一假.…(6分)
如果p真,q假$?\left\{\begin{array}{l}0<a<4\\ a>\frac{1}{4}\end{array}\right.?\frac{1}{4}<a<4$;…(8分)

如果p假q真$?\left\{\begin{array}{l}a≤0或a≥4\\ a≤\frac{1}{4}\end{array}\right.?a≤0$…(10分)
所以实数a的取值范围为$({-∞,0}]∪({\frac{1}{4},4})$…(12分)

点评 本题以命题为载体,考查复合命题的真假运用,解题的关键是根据命题p或q为真命题,p且q为假命题,可得p和q有且只有一个是真命题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知复数w满足w-4=(3-2w)i(i为虚数单位),$z=\frac{5}{w}+|\overline w-2|$.
(1)求z;
(2)若(1)中的z是关于x的方程x2-px+q=0的一个根,求实数p,q的值及方程的另一个根.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“关于x的不等式x2-ax+4>0在(0,+∞)上恒成立”的否定是(  )
A.?x∈(-∞,0),x2-ax+4>0B.?x∈(-∞,0),x2-ax+4>0
C.?x∈(0,+∞),x2-ax+4≤0D.?x∈(0,+∞),x2-ax+4≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知a+b+c+d>100,求证a,b,c,d中,至少有一个数大于25;
(2)已知a>0,b>0,求证:a3+b3≥a2b+ab2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在高200m的山顶上,测得山下一塔顶和塔底的俯角(从上往下看,视线与水平线的夹角)分别为30°,60°,则塔高为(  )
A.$\frac{200}{3}$mB.$\frac{200\sqrt{3}}{3}$mC.$\frac{400}{3}$mD.$\frac{400\sqrt{3}}{3}$m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等比数列{an}中,a1+a3=10,a4+a6=$\frac{5}{4}$.
(Ⅰ)求a4的值;
(Ⅱ)求S5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.计算i+i2+…+i2015的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某人沿一条折线段组成的小路前进,从A到B,方位角(从正北方向顺时针转到AB方向所成的角)是50°,距离是3km;从B到C,方位角是110°,距离是3km;从C到D,方位角是140°,距离是($9+3\sqrt{3}$)km.
(Ⅰ)试在图中画全大致示意图,并求A到C的距离;
(Ⅱ)计算出从A到D的距离和方位角.(结果保留根号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设{an}为递增的正整数数列,an+2=an+an+1(n∈N*)若a5=24,则a6=39.

查看答案和解析>>

同步练习册答案