精英家教网 > 高中数学 > 题目详情
16.计算i+i2+…+i2015的值为-1.

分析 由于i2015=(i4503•i3=-i.再利用等比数列当前n项和公式即可得出.

解答 解:∵i2015=(i4503•i3=-i.
∴i+i2+…+i2015=$\frac{i(1-{i}^{2015})}{1-i}$=$\frac{i(1+i)}{1-i}$=$\frac{i-1}{1-i}$=-1.
故答案为:-1.

点评 本题考查了复数的运算法则、周期性、等比数列当前n项和公式,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知圆C的圆心在坐标原点,且被直线3x+4y+15=0截得的弦长为8
(Ⅰ)试求圆C的方程;
(Ⅱ)当P在圆C上运动时,点D是P在x轴上的投影,M为线段PD上一点,且|MD|=$\frac{4}{5}$|PD|.求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若函数y=f(x)(x∈D)同时满足以下条件:①它在定义域D上是单调递减或递增函数;②存在区间[a,b]?D使得f(x)在[a,b]上的值域也是[a,b],我们将这样的函数称作“A类函数”.
(1)函数f(x)=-x3是不是“A类函数”?如果是,试找出[a,b];如果不是,试说明理由;
(2)求使得函数g(x)=k+$\sqrt{x+2}$是“A类函数”的常数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:对任意实数x都有x2+ax+a>0恒成立;
命题q:关于x的方程x2-x+a=0有实数根;
如果“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.数列{an}的首项为a1=1,数列{bn}为等比数列且${b}_{n}=\frac{{a}_{n+1}}{{a}_{n}}$,若${b}_{10}{b}_{11}=\root{5}{2}$则a21=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数y=f(x)是定义域为R偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{-\frac{{x}^{2}}{2},0≤x≤2}\\{\frac{x}{1-x},x>2}\end{array}\right.$,若函数f(x)在(t,t+2)上的值域是$(-\frac{3}{2},0]$,则实数t的值的集合为{-$\sqrt{3}$,$\sqrt{3}$-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个角的度数是45°,化为弧度数是(  )
A.45B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知二次函数f(x)=ax2+bx+c,若f(1)=1,f(2)=2,则f(2+k)-f(1-k)=2k+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在△ABC中,a,b,c分别为内角A,B,C的对边,且满足cos2A+2sin2B+2sin2C-2$\sqrt{3}$sinBsinC=1.
(1)求角A的大小;
(2)若b=$\sqrt{3}$,c=4,求△ABC的外接圆的面积.

查看答案和解析>>

同步练习册答案