精英家教网 > 高中数学 > 题目详情

【题目】如图,在直四棱柱中,分别为的中点,

1)证明:平面.

2)求直线与平面所成角的正弦值.

【答案】1)证明见解析;(2.

【解析】

1)连接,利用三角形的中位线性质可得,再利用线面平行的判定定理即可证出.

2)在平面中,过点,以为原点,分别以所在直线为轴建立空间直角坐标系,求出平面的一个法向量,利用空间向量的数量积,由即可求解.

解:(1)连接,易知侧面为矩形,

的中点,的中点.

的中点,

平面平面

平面

2)在平面中,过点,易知平面

故以为原点,分别以所在直

线为轴建立如图所示空间直角坐标系,

设平面的法向量为

解得

,所以

所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆的左、右焦点分别为F1F2,点A在椭圆E上且在第一象限内,AF2F1F2,直线AF1与椭圆E相交于另一点B

1)求AF1F2的周长;

2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求的最小值;

3)设点M在椭圆E上,记OABMAB的面积分别为S1S2,若S2=3S1,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校课外兴趣小组利用假期到植物园开展社会实践活动,研究某种植物生长情况与温度的关系.现收集了该种植物月生长量ycm)与月平均气温x(℃)的8组数据,并制成如图所示的散点图.

根据收集到的数据,计算得到如下值:

18

12.325

224.04

235.96

1)求出y关于x的线性回归方程(最终结果的系数精确到0.01),并求温度为28℃时月生长量y的预报值;

2)根据y关于x的回归方程,得到残差图如图所示,分析该回归方程的拟合效果.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W与时间t的关系为,用的大小评价在这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.


给出下列四个结论:

①在这段时间内,甲企业的污水治理能力比乙企业强;

②在时刻,甲企业的污水治理能力比乙企业强;

③在时刻,甲、乙两企业的污水排放都已达标;

④甲企业在这三段时间中,在的污水治理能力最强.

其中所有正确结论的序号是____________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二年级进行选课走班,已知语文、数学、英语是必选学科,另外需从物理、化学、生物、政治、历史、地理6门学科中任选3门进行学习. 现有甲、乙、丙三人,若同学甲必选物理,则下列结论正确的是(

A.甲的不同的选法种数为10

B.甲、乙、丙三人至少一人选化学与全选化学是对立事件

C.乙同学在选物理的条件下选化学的概率是

D.乙、丙两名同学都选物理的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①,②,③这三个条件中选择两个,补充在下面问题中,并给出解答.已知数列的前项和为,满足________________;又知正项等差数列满足,且成等比数列.

1)求的通项公式;

2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立

(1)记20件产品中恰有2件不合格品的概率为,的最大值点

(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用

(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;

(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱锥中,面.

1)若,求证:

2)若,且互余,求直线和面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

)当时,判断在定义域上的单调性;

)若上的最小值为,求的值.

查看答案和解析>>

同步练习册答案