精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\frac{{{x^2}-1}}{x}$-klnx(x≥1).
(1)若f(x)≥0恒成立,求k的取值范围;
(2)若取$\sqrt{5}$=2.2361,试估计ln$\frac{5}{4}$的值.( 精确到0.001)

分析 (1)$f'(x)=\frac{{{x^2}-kx+1}}{x^2}$,由此利用分类讨论思想和导数性质能求出k的取值范围.
(2)由已知得$\frac{{{x^2}-1}}{x}≥2lnx$在[1,+∞)上恒成立,由此能求出结果.

解答 解:(1)∵函数f(x)=$\frac{{{x^2}-1}}{x}$-klnx(x≥1),
∴$f'(x)=\frac{{{x^2}-kx+1}}{x^2}$.
①当-2≤k≤2时,k2-4≤0,x2-kx+1≥0恒成立,
所以x∈[1,+∞)时,f'(x)≥0,f(x)单调递增,
f(x)≥f(1)=0恒成立.
②当k<-2或k>2时,f'(x)=0,
解得${x_1}=\frac{{k-\sqrt{{k^2}-4}}}{2},{x_2}=\frac{{k+\sqrt{{k^2}-4}}}{2}$,且x1+x2=k,x1•x2=1.
(ⅰ) 若k<-2,则x1<0,x2<0,
∴x∈[1,+∞)时,f'(x)≥0,f(x)单调递增,f(x)≥f(1)=0恒成立.
(ⅱ) 若k>2,则x1<1,x2>1,
当x∈(1,x2)时,f'(x)<0,f(x)单调递减,f(x)<f(1)=0,
这与f(x)≥0恒成立矛盾,
综上所述,k的取值范围为(-∞,2].
(2)由(1)得$\frac{{{x^2}-1}}{x}≥2lnx$在[1,+∞)上恒成立,
取$x=\frac{{\sqrt{5}}}{4}>1$得$2ln\sqrt{\frac{5}{4}}<\sqrt{\frac{5}{4}}-\sqrt{\frac{4}{5}}$,
即$ln\frac{5}{4}<\sqrt{\frac{5}{2}}-\frac{2}{{\sqrt{5}}}=\frac{{\sqrt{5}}}{10}=0.22361$,
由(1)得k>2时,$\frac{{{x^2}-1}}{x}<klnx$在$({1,\frac{{k+\sqrt{{k^2}-4}}}{2}})$时恒成立,
令$\frac{{k+\sqrt{{k^2}-4}}}{2}=\sqrt{\frac{5}{4}}$,解得$k=\frac{{9\sqrt{5}}}{10}$,
取$k=\frac{{9\sqrt{5}}}{10}>2$,则有$\frac{{{x^2}-1}}{x}<\frac{{9\sqrt{5}}}{10}lnx$在$({1,\sqrt{\frac{5}{4}}})$上恒成立,
取$x=\sqrt{\frac{5}{4}}$得$\sqrt{\frac{5}{4}}-\sqrt{\frac{4}{5}}<\frac{{9\sqrt{5}}}{10}ln\sqrt{\frac{5}{4}}$,
∴$ln\frac{5}{4}>\frac{2}{9}≈0.2222$,$0.2222<ln\frac{5}{4}<0.22361$(精确到0.001).
取$ln\frac{5}{4}=0.223$.

点评 本题考查实数的取值范围的求法,考查对数值的估计值的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的公切线的条数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.2016年1月2日凌晨某公司公布的元旦全天交易数据显示,天猫元旦当天全天的成交金额为315.5亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了1月1日100名网购者的网购情况,得到如表数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.
网购金额(元)频数频率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合计1001.00
(1)先求出x,y,p,q的值,再将如图所示的频率分布直方图绘制完整;
(2)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?
x网龄3年以上网龄不足3年合计
购物金额在2000元以上35
购物金额在2000元以下20
总计100
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.点P是双曲线$\frac{x^2}{9}$-$\frac{y^2}{16}$=1的右支上一点,M是圆(x+5)2+y2=4上一点,点N的坐标为(5,0),则|PM|-|PN|的最大值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义在实数集R上的函数f(x)满足:f(x-1)+f(x+1)=0,且f(2-x)-f(2+x)=0现有以下四种说法:
①2是函数f(x)的一个周期;
②f(x)的图象关于直线x=2对称;
③f(x)是偶函数;
④(-1,0)是函数f(x)的一个对称中心.
其中正确说法的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,a,b,c分别为角A,B,C所对的边,S为△ABC的面积,且S=$\frac{{\sqrt{3}}}{4}$(a2-b2-c2).
(I)求角A的大小;
(II)若a=2$\sqrt{7}$,b>c,D为BC的中点,且AD=$\sqrt{3}$,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设变量x、y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≥2}\\{y≥3x-6}\end{array}\right.$,则$\frac{y+1}{x}$最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四组中的f(x),g(x),表示同一个函数的是(  )
A.f(x)=1,g(x)=x0B.f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1
C.f(x)=x2,g(x)=($\sqrt{x}$)4D.f(x)=x3,f(t)=t3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在多面体ABCDEF中,四边形ABCD为正方形,EF∥AB,EF⊥EA,AB=2EF=2,∠AED=90°,AE=ED,H为AD的中点.
(1)求证:EH⊥平面ABCD;
(2)在线段BC上是否存在一点P,使得二面角B-FD-P的大小为$\frac{π}{3}$?若存在,求出BP的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案