精英家教网 > 高中数学 > 题目详情
要做一个圆锥形的漏斗,其母线长为40cm,要使其体积为最大,则高为(  )
A、
10
3
3
cm
B、
20
3
3
cm
C、10
3
cm
D、
40
3
3
cm
考点:导数在最大值、最小值问题中的应用,旋转体(圆柱、圆锥、圆台)
专题:导数的综合应用,空间位置关系与距离
分析:设出圆锥的高,求出底面半径,推出体积的表达式,利用导数求出体积的最大值时的高即可.
解答: 解:设圆锥的高为h cm,
∴V圆锥=
1
3
π(1600-h2)×h,
∴V′(h)=π(1600-3h2).令V′(h)=0,
得h2=
1600
3
,∴h=
40
3
3
(cm)
当0<h<
40
3
3
时,V′>0;
40
3
3
<h<20时,V′<0,
∴当h=
40
3
3
时,V取最大值.
故选:D.
点评:本题考查旋转体问题,以及利用导数求函数的最值问题,考查计算能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列选项中,p是q的必要不充分条件的是(  )
A、p:f(x)=x3+2x2+mx+1在R上单调递增;q:m≥
4
3
B、p:x=1;q:x=x2
C、p:a+bi(a,b∈R)是纯虚数;q:a=0
D、p:a+c>b+d;q:a>b且c>d

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次独立性检验中,得出2×2列联表如下:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

A
.
A
合计
B 200 800 1000
.
B
180 a 180+a
合计 380 800+a 1180+a
且最后发现,两个分类变量A和B没有任何关系,则a的可能值是(  )
A、200B、720
C、100D、180

查看答案和解析>>

科目:高中数学 来源: 题型:

方程a2•sin2x+asinx-2=0有解的条件是(  )
A、|a|≤1B、|a|≥1
C、|a|≥2D、a∈R

查看答案和解析>>

科目:高中数学 来源: 题型:

数列2,5,8,11,…,则23是这个数列的(  )
A、第5项B、第6项
C、第7项D、第8项

查看答案和解析>>

科目:高中数学 来源: 题型:

两个不同的口袋中,各装有大小、形状完全相同的1个红球、2个黄球.现从每一个口袋中各任取2球,设随机变量ξ为取得红球的个数,则Eξ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,a、b、c分别是角A、B、C的对边,已知b2+c2=a2+bc,
AC
AB
=4,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1,侧面BCC1B1⊥底面ABC.
(Ⅰ)若M、N分别为AB、A1C的中点,求证:MN∥平面BCC1B1
(Ⅱ)若三棱柱ABC-A1B1C1的各棱长均为2,侧棱BB1与底面ABC所成的角为
60°.问在线段CC1上是否存在一点P,使得平面ABP与底面ABC的所成角为
60°,若存在,求BP的长度,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ADEF与梯形ABCD所在平面互相垂直,AD⊥CD,AB∥CD,AB=AD=
1
2
CD=2,点M在线段EC上且不与E,C重合.
(Ⅰ)当点M是EC中点时,求证:BM∥平面ADEF;
(Ⅱ)当三棱锥M-BDE的体积为
4
3
时,求平面BDM与平面ABF所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案