精英家教网 > 高中数学 > 题目详情
19.已知关于x的函数g(x)=$\frac{2}{x}$-alnx,f(x)=x2+g(x),a>0时,若f(x)有唯一零点x0,试求x0

分析 a>0时,由f(1)=3知x∈(0,1)时,f(x)>0,因此x0>1.又f′(x)在区间(1,+∞)上只有一个极小值点记为x1,由题意可知:x1即为x0.得到x02+$\frac{2}{{x}_{0}}$-alnx0=0,2x03-ax0-2=0,消去a,令t1(x)=2lnx(x>1),t2(x)=1+$\frac{3}{{{x}_{0}}^{3}-1}$(x>0),分别研究单调性即可得出x0的取值范围.

解答 解:∵a>0时,f(1)=3知x∈(0,1)时,f(x)>0,
∴x0>1.
又f′(x)在区间(1,+∞)上只有一个极小值点记为x1
且x∈(1,x1)时,函数f(x)单调递减,x∈(x1,+∞)时,函数f(x)单调递增,
由题意可知:x1即为x0
∴f(x0)=0,f′(x0)=0,
∴x02+$\frac{2}{{x}_{0}}$-alnx0=0,2x03-ax0-2=0,消去a可得:2lnx0=1+$\frac{3}{{{x}_{0}}^{3}-1}$,
a>0,令t1(x)=2lnx(x>1),t2(x)=1+$\frac{3}{{{x}_{0}}^{3}-1}$(x>0),
则在区间(1,+∞)上t1(x)单调递增,t2(x)单调递减.
t1(2)=2ln2<2×0.7=$\frac{7}{5}$<$\frac{10}{7}$=t2(2),
t1(3)=2ln3>2>1+$\frac{3}{26}$=t2(3).
∴2<x0<3.

点评 本题考查了利用导数研究函数的单调性,考查了分析问题与解决问题的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知集合A={-1,1,2,3},从A中随机抽取两个不同的元素a,b,作为复数z=a+bi(i为虚数单位)的实部和虚部.
(Ⅰ)求复数z在复平面内的对应点位于第一象限的概率;
(Ⅱ)设ξ=|z|2,求ξ的分布列及其数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=(x-1)ex+1,x∈[0,1]
(1)证明:f(x)≥0;
(2)若a<$\frac{{e}^{x}-1}{x}$<b在x∈(0,1)恒成立,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,直线y=x+$\sqrt{2}$与以原点为圆心、椭圆C的短半轴长为半径的圆O相切.
(1)求椭圆C的方程;
(2)设直线x=$\frac{1}{2}$与椭圆C交于不同的两点M,N,以线段MN为直径作圆D,若圆D与y轴相交于不同的两点A,B,求△ABD的面积;
(3)如图,A1,A2,B1,B2是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线B2P交x轴于点F,直线A1B2交A2P于点E,设A2P的斜率为k,EF的斜率为m,求证:2m-k为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=lnx+$\frac{m}{x}$+1,m∈R.
(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的最小值;
(Ⅱ)讨论函数g(x)=f′(x)-$\frac{x}{3}$零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.袋中有3个红球,4个白球.
(1)甲一次摸出3个球,求至少摸出1个红球的概率;
(2)甲依次摸出3个球(不放回),求第3次摸到红球的概率;
(3)甲依次摸出3个球(不放回),求第3次才摸到红球的概率;
(4)摸到3个球同色时,三个球均为红球的概率;
(5)甲有放回地摸球20次,摸出红球的次数为X,求E(X)和D(X);
(6)从中取出3个球其中红球个数为X,指出X服从何分布并给出其分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-$\frac{a}{x}$+$\frac{a}{{x}^{2}}$(a∈R).
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)若f(x)在[1,+∞)上存在单调减区间,求实数a的取值范围;
(3)在(1)的条件下,证明:$\frac{1-{x}^{2}-({x}^{2}+x)(f(x)+\frac{1}{x}-\frac{1}{{x}^{2}})}{{e}^{x}}$<1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在一个盒子里放有6张卡片,上面标有数字1,2,3,4,5,6,现在从盒子里每次任意取出一张卡片,取两张.
(1)若每次取出后不再放回,求取到的两张卡片上数字之积大于12的概率;
(2)在每次取出后再放回和每次取出后不再放回这两种取法中,得到的两张卡片上的最大数字的期望值是否相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知正数x、y满足log2(x-2y)+log2(x+2y)=2,则z=x-y最小值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案