7£®ÉèÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$£¬Ö±Ïßy=x+$\sqrt{2}$ÓëÒÔÔ­µãΪԲÐÄ¡¢ÍÖÔ²CµÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²OÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßx=$\frac{1}{2}$ÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãM£¬N£¬ÒÔÏß¶ÎMNΪֱ¾¶×÷Ô²D£¬ÈôÔ²DÓëyÖáÏཻÓÚ²»Í¬µÄÁ½µãA£¬B£¬Çó¡÷ABDµÄÃæ»ý£»
£¨3£©Èçͼ£¬A1£¬A2£¬B1£¬B2ÊÇÍÖÔ²CµÄ¶¥µã£¬PÊÇÍÖÔ²CÉϳý¶¥µãÍâµÄÈÎÒâµã£¬Ö±ÏßB2P½»xÖáÓÚµãF£¬Ö±ÏßA1B2½»A2PÓÚµãE£¬ÉèA2PµÄбÂÊΪk£¬EFµÄбÂÊΪm£¬ÇóÖ¤£º2m-kΪ¶¨Öµ£®

·ÖÎö £¨1£©ÓÉÓÚÖ±Ïßy=x+$\sqrt{2}$ÓëÒÔÔ­µãΪԲÐÄ¡¢ÍÖÔ²CµÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²OÏàÇУ¬¿ÉµÃ$\frac{|0-\sqrt{2}|}{\sqrt{2}}$=b£¬½âµÃb£®ÓÖÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$=$\frac{c}{a}$£¬b2=a2-c2£¬ÁªÁ¢½âµÃ¼´¿ÉµÃ³ö£®
£¨2£©°Ñx=$\frac{1}{2}$´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º${y}^{2}=1-\frac{1}{16}$£¬¿ÉµÃ¡ÑDµÄ·½³ÌΪ£º$£¨x-\frac{1}{2}£©^{2}+{y}^{2}=\frac{15}{16}$£®Áîx=0£¬½âµÃy£¬¿ÉµÃ|AB|£¬ÀûÓÃS¡÷ABD=$\frac{1}{2}|AB|•|OD|$¼´¿ÉµÃ³ö£®
£¨3£©ÓÉ£¨1£©Öª£ºA1£¨-2£¬0£©£¬A2£¨2£¬0£©£¬B2£¨0£¬1£©£¬¿ÉµÃÖ±ÏßA1B2ADµÄ·½³Ì£¬ÉèÖ±ÏßA2PµÄ·½³ÌΪy=k£¨x-2£©£¬k¡Ù0£¬ÇÒk¡Ù$¡À\frac{1}{2}$£¬ÁªÁ¢½âµÃE£®ÉèP£¨x1£¬y1£©£¬ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£¨4k2+1£©x2-16k2x+16k2-4=0£®½âµÃP£®ÉèF£¨x2£¬0£©£¬ÔòÓÉP£¬B2£¬FÈýµã¹²Ïߵã¬${k}_{{B}_{2}P}={k}_{{B}_{2}F}$£®¿ÉµÃF£®¼´¿ÉÖ¤Ã÷2m-kΪ¶¨Öµ£®

½â´ð £¨1£©½â£º¡ßÖ±Ïßy=x+$\sqrt{2}$ÓëÒÔÔ­µãΪԲÐÄ¡¢ÍÖÔ²CµÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²OÏàÇУ¬
¡à$\frac{|0-\sqrt{2}|}{\sqrt{2}}$=b£¬»¯Îªb=1£®
¡ßÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$=$\frac{c}{a}$£¬b2=a2-c2=1£¬ÁªÁ¢½âµÃa=2£¬c=$\sqrt{3}$£®
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}$=1£»
£¨2£©½â£º°Ñx=$\frac{1}{2}$´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º${y}^{2}=1-\frac{1}{16}$£¬½âµÃy=¡À$\frac{\sqrt{15}}{4}$£®
¡à¡ÑDµÄ·½³ÌΪ£º$£¨x-\frac{1}{2}£©^{2}+{y}^{2}=\frac{15}{16}$£®
Áîx=0£¬½âµÃy=¡À$\frac{\sqrt{11}}{4}$£¬
¡à|AB|=$\frac{\sqrt{11}}{2}$£¬
¡àS¡÷ABD=$\frac{1}{2}|AB|•|OD|$=$\frac{1}{2}¡Á\frac{\sqrt{11}}{2}¡Á\frac{1}{2}$=$\frac{\sqrt{11}}{8}$£®
£¨3£©Ö¤Ã÷£ºÓÉ£¨1£©Öª£ºA1£¨-2£¬0£©£¬A2£¨2£¬0£©£¬B2£¨0£¬1£©£¬
¡àÖ±ÏßA1B2µÄ·½³ÌΪ$y=\frac{1}{2}x+1$£¬
ÓÉÌâÒ⣬ֱÏßA2PµÄ·½³ÌΪy=k£¨x-2£©£¬k¡Ù0£¬ÇÒk¡Ù$¡À\frac{1}{2}$£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{1}{2}x+1}\\{y=k£¨x-2£©}\end{array}\right.$£¬½âµÃ$E£¨\frac{4k+2}{2k-1}£¬\frac{4k}{2k-1}£©$£®
ÉèP£¨x1£¬y1£©£¬ÔòÓÉ$\left\{\begin{array}{l}{y=k£¨x-2£©}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨4k2+1£©x2-16k2x+16k2-4=0£®
¡à2x1=$\frac{16{k}^{2}-4}{4{k}^{2}+1}$£¬¡àx1=$\frac{8{k}^{2}-2}{4{k}^{2}+1}$£¬y1=k£¨x1-2£©=$\frac{-4k}{4{k}^{2}+1}$£®
¡à$P£¨\frac{8{k}^{2}-2}{4{k}^{2}+1}£¬\frac{-4k}{4{k}^{2}+1}£©$£®
ÉèF£¨x2£¬0£©£¬ÔòÓÉP£¬B2£¬FÈýµã¹²Ïߵã¬${k}_{{B}_{2}P}={k}_{{B}_{2}F}$£®
¼´$\frac{\frac{-4k}{4{k}^{2}+1}-1}{\frac{8{k}^{2}-2}{4{k}^{2}+1}-0}$=$\frac{0-1}{{x}_{2}-0}$£¬¡àx2=$\frac{4k-2}{2k+1}$£¬¡àF$£¨\frac{4k-2}{2k+1}£¬0£©$£®
¡àEFµÄбÂÊm=$\frac{\frac{4k}{2k-1}-0}{\frac{4k+2}{2k-1}-\frac{4k-2}{2k+1}}$=$\frac{2k+1}{4}$£®
¡à2m-k=$\frac{2k+1}{2}$-k=$\frac{1}{2}$Ϊ¶¨Öµ£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²Ïཻת»¯Îª·½³ÌÁªÁ¢¡¢Ð±ÂʼÆË㹫ʽ¡¢ÏÒ³¤¹«Ê½¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬Õý·½ÐÎA1BCDÕÛ³ÉÖ±¶þÃæ½ÇA-BD-C£¬Ôò¶þÃæ½ÇA-CD-BµÄÓàÏÒÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{\sqrt{3}}{3}$C£®$\frac{1}{2}$D£®$\frac{\sqrt{2}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=ax3+bx2-3xÔÚx=¡À1´¦È¡µÃ¼«Öµ£®
£¨1£©Çóa£¬bµÄÖµ
£¨2£©Çóf£¨x£©ÔÚx¡Ê[-3£¬3]µÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÖ±Ïßl£º$\sqrt{2}$ax+by=1ÓëÔ²x2+y2=1ÏཻÓÚA¡¢BÁ½µã£¨ÆäÖÐa£¬bΪʵÊý£©£¬µãQ£¨0£¬$\frac{2}{3}$£©ÊÇÔ²ÄÚµÄÒ»¶¨µã£®
£¨1£©Èôa=$\sqrt{2}$£¬b=1£¬Çó¡÷AOBµÄÃæ»ý£»
£¨2£©Èô¡÷AOBΪֱ½ÇÈý½ÇÐΣ¨OÎª×ø±êÔ­µã£©£¬ÇóµãP£¨a£¬b£©ÓëµãQÖ®¼ä¾àÀë×î´óʱµÄÖ±Ïßl·½³Ì£»
£¨3£©Èô¡÷AQBΪֱ½ÇÈý½ÇÐΣ¬ÇÒ¡ÏAQB=90¡ã£¬ÊÔÇóABÖеãMµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=alnx-bx2£¬a£¬b¡ÊR£®
£¨¢ñ£©Èôf£¨x£©ÔÚx=1´¦ÓëÖ±Ïßy=-$\frac{1}{2}$ÏàÇУ¬Çóa£¬bµÄÖµ£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬Çóf£¨x£©ÔÚ[$\frac{1}{e}$£¬e]ÉϵÄ×î´óÖµ£»
£¨¢ó£©Èô²»µÈʽf£¨x£©¡Ýx¶ÔËùÓеÄb¡Ê£¨-¡Þ£¬0]£¬x¡Ê£¨e£¬e2]¶¼³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ϶¥µãΪB£¨0£¬-1£©£¬Bµ½½¹µã»Í¾àÀëΪ2£®
£¨1£©ÉèQÊÇÍÖÔ²Éϵ͝µã£¬Çó|BQ|µÄ×î´óÖµ£»
£¨2£©Ö±Ïßl¹ý¶¨µãP£¨0£¬2£©ÓëÍÖÔ²C½»ÓÚÁ½µãM£¬N£¬¡÷BMNµÄÃæ»ýΪ$\frac{6}{5}$£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª¹ØÓÚxµÄº¯Êýg£¨x£©=$\frac{2}{x}$-alnx£¬f£¨x£©=x2+g£¨x£©£¬a£¾0ʱ£¬Èôf£¨x£©ÓÐΨһÁãµãx0£¬ÊÔÇóx0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=sin£¨2¦Øx-$\frac{¦Ð}{6}$£©+2cos2¦Øx-1£¨¦Ø£¾0£©£¬Ö±Ïßx=x1£¬x=x2ÊÇy=f£¨x£©Í¼ÏóµÄÈÎÒâÁ½Ìõ¶Ô³ÆÖᣬÇÒ|x1-x2|µÄ×îСֵΪ$\frac{¦Ð}{2}$£®
£¨1£©Ç󦨵ÄÖµ£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚÇø¼ä[-$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{2}$]ÉϵÄÖµÓò£»
£¨3£©Èôf£¨a£©=$\frac{1}{3}$£¬Çósin£¨$\frac{7¦Ð}{6}$-4a£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÅ×ÎïÏßy2=2xÉÏÓÐËĵãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©¡¢C£¨x3£¬y3£©¡¢D£¨x4£¬y4£©£¬µãM£¨3£¬0£©£¬Ö±ÏßAB¡¢CD¶¼¹ýµãM£¬ÇÒ¶¼²»´¹Ö±ÓÚxÖᣬֱÏßPQ¹ýµãMÇÒ´¹Ö±ÓÚxÖᣬ½»ACÓÚµãP£¬½»BDÓÚµãQ£®
£¨1£©Çóy1y2µÄÖµ£»
£¨2£©ÇóÖ¤£ºMP=MQ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸