·ÖÎö £¨1£©ÓÉÓÚÖ±Ïßy=x+$\sqrt{2}$ÓëÒÔÔµãΪԲÐÄ¡¢ÍÖÔ²CµÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²OÏàÇУ¬¿ÉµÃ$\frac{|0-\sqrt{2}|}{\sqrt{2}}$=b£¬½âµÃb£®ÓÖÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$=$\frac{c}{a}$£¬b2=a2-c2£¬ÁªÁ¢½âµÃ¼´¿ÉµÃ³ö£®
£¨2£©°Ñx=$\frac{1}{2}$´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º${y}^{2}=1-\frac{1}{16}$£¬¿ÉµÃ¡ÑDµÄ·½³ÌΪ£º$£¨x-\frac{1}{2}£©^{2}+{y}^{2}=\frac{15}{16}$£®Áîx=0£¬½âµÃy£¬¿ÉµÃ|AB|£¬ÀûÓÃS¡÷ABD=$\frac{1}{2}|AB|•|OD|$¼´¿ÉµÃ³ö£®
£¨3£©ÓÉ£¨1£©Öª£ºA1£¨-2£¬0£©£¬A2£¨2£¬0£©£¬B2£¨0£¬1£©£¬¿ÉµÃÖ±ÏßA1B2ADµÄ·½³Ì£¬ÉèÖ±ÏßA2PµÄ·½³ÌΪy=k£¨x-2£©£¬k¡Ù0£¬ÇÒk¡Ù$¡À\frac{1}{2}$£¬ÁªÁ¢½âµÃE£®ÉèP£¨x1£¬y1£©£¬ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£¨4k2+1£©x2-16k2x+16k2-4=0£®½âµÃP£®ÉèF£¨x2£¬0£©£¬ÔòÓÉP£¬B2£¬FÈýµã¹²Ïߵã¬${k}_{{B}_{2}P}={k}_{{B}_{2}F}$£®¿ÉµÃF£®¼´¿ÉÖ¤Ã÷2m-kΪ¶¨Öµ£®
½â´ð £¨1£©½â£º¡ßÖ±Ïßy=x+$\sqrt{2}$ÓëÒÔÔµãΪԲÐÄ¡¢ÍÖÔ²CµÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²OÏàÇУ¬![]()
¡à$\frac{|0-\sqrt{2}|}{\sqrt{2}}$=b£¬»¯Îªb=1£®
¡ßÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$=$\frac{c}{a}$£¬b2=a2-c2=1£¬ÁªÁ¢½âµÃa=2£¬c=$\sqrt{3}$£®
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}$=1£»
£¨2£©½â£º°Ñx=$\frac{1}{2}$´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º${y}^{2}=1-\frac{1}{16}$£¬½âµÃy=¡À$\frac{\sqrt{15}}{4}$£®
¡à¡ÑDµÄ·½³ÌΪ£º$£¨x-\frac{1}{2}£©^{2}+{y}^{2}=\frac{15}{16}$£®
Áîx=0£¬½âµÃy=¡À$\frac{\sqrt{11}}{4}$£¬
¡à|AB|=$\frac{\sqrt{11}}{2}$£¬
¡àS¡÷ABD=$\frac{1}{2}|AB|•|OD|$=$\frac{1}{2}¡Á\frac{\sqrt{11}}{2}¡Á\frac{1}{2}$=$\frac{\sqrt{11}}{8}$£®
£¨3£©Ö¤Ã÷£ºÓÉ£¨1£©Öª£ºA1£¨-2£¬0£©£¬A2£¨2£¬0£©£¬B2£¨0£¬1£©£¬
¡àÖ±ÏßA1B2µÄ·½³ÌΪ$y=\frac{1}{2}x+1$£¬
ÓÉÌâÒ⣬ֱÏßA2PµÄ·½³ÌΪy=k£¨x-2£©£¬k¡Ù0£¬ÇÒk¡Ù$¡À\frac{1}{2}$£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{1}{2}x+1}\\{y=k£¨x-2£©}\end{array}\right.$£¬½âµÃ$E£¨\frac{4k+2}{2k-1}£¬\frac{4k}{2k-1}£©$£®
ÉèP£¨x1£¬y1£©£¬ÔòÓÉ$\left\{\begin{array}{l}{y=k£¨x-2£©}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨4k2+1£©x2-16k2x+16k2-4=0£®
¡à2x1=$\frac{16{k}^{2}-4}{4{k}^{2}+1}$£¬¡àx1=$\frac{8{k}^{2}-2}{4{k}^{2}+1}$£¬y1=k£¨x1-2£©=$\frac{-4k}{4{k}^{2}+1}$£®
¡à$P£¨\frac{8{k}^{2}-2}{4{k}^{2}+1}£¬\frac{-4k}{4{k}^{2}+1}£©$£®
ÉèF£¨x2£¬0£©£¬ÔòÓÉP£¬B2£¬FÈýµã¹²Ïߵã¬${k}_{{B}_{2}P}={k}_{{B}_{2}F}$£®
¼´$\frac{\frac{-4k}{4{k}^{2}+1}-1}{\frac{8{k}^{2}-2}{4{k}^{2}+1}-0}$=$\frac{0-1}{{x}_{2}-0}$£¬¡àx2=$\frac{4k-2}{2k+1}$£¬¡àF$£¨\frac{4k-2}{2k+1}£¬0£©$£®
¡àEFµÄбÂÊm=$\frac{\frac{4k}{2k-1}-0}{\frac{4k+2}{2k-1}-\frac{4k-2}{2k+1}}$=$\frac{2k+1}{4}$£®
¡à2m-k=$\frac{2k+1}{2}$-k=$\frac{1}{2}$Ϊ¶¨Öµ£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²Ïཻת»¯Îª·½³ÌÁªÁ¢¡¢Ð±ÂʼÆË㹫ʽ¡¢ÏÒ³¤¹«Ê½¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{3}$ | B£® | $\frac{\sqrt{3}}{3}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{\sqrt{2}}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com