精英家教网 > 高中数学 > 题目详情
(1)已知函数y=f(x)的定义域为R,且当x∈R时,f(m+x)=f(m-x)恒成立,求证y=f(x)的图象关于直线x=m对称;
(2)若函数y=log2|ax-1|的图象的对称轴是x=2,求非零实数a的值.
考点:抽象函数及其应用
专题:函数的性质及应用
分析:(1)设P(s,t)是y=f(x)图象上任一点,P点关于x=m的对称点为P',运用对称知识求出P'的坐标,说明也在函数f(x)的图象上即可得证;
(2)根据(1)得到log2|a(2+x)-1|=log2|a(2-x)-1|恒成立,然后由对数知识,去对数符号,整理,由x的任意性和a不为0,即可求出a的值.
解答: (1)证明:设P(s,t)是y=f(x)图象上任一点,则t=f(s),
又P点关于x=m的对称点为P',则P'(2m-s,t),
由已知f(m+x)=f(m-x)得,f(2m-s)=f(m+(m-s))=f(m-(m-s))=f(s)=t,
即P'在y=f(x)的图象上,
∴y=f(x)的图象关于直线x=m对称;
(2)解:∵函数y=log2|ax-1|的图象的对称轴是x=2,
∴log2|a(2+x)-1|=log2|a(2-x)-1|恒成立,
即|a(2+x)-1|=|a(2-x)-1|恒成立,
即|ax+(2a-1)|=|-ax+(2a-1)|恒成立,
∵a≠0,∴2a-1=0,即a=
1
2
点评:本题考查函数的对称性及运用,注意设点求对称点,同时考查恒成立问题,注意转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

解不等式:
(1)|x-1|<1-2x
(2)|x-1|-|x+1|>x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点O,焦点在x轴上,离心率为
1
2
,右焦点到右顶点的距离为1.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:mx+y+1=0与椭圆C交于A,B两点,是否存在实数m,使|
OA
+
OB
|=|
OA
-
OB
||成立?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

规定C
 
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整数,且C
 
0
x
=1这是组合数C
 
m
n
(n,m是正整数,且m≤n)的一种推广.
(1)C
 
5
-15
的值;
(2)组合数的两个性质:C
 
m
n
=C
 
n-m
n
;C
 
m
n
+C
 
m-1
n
=C
 
m
n+1
是否都能推广到C
 
m
x
(x∈R,m∈N*)的情形?若能推广,则写出推广的形式并给予证明,或不能则说明理由;
(3)已知组合数C
 
m
n
是正整数,证明:当x∈Z,m是正整数时,C
 
m
x
∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:

C
r
12
=
C
2r-3
12
,则r=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公比不为1的等比数列{an}的首项a1=
1
2
,前n项和为Sn,且a3+S5,a4+S4,a5+S3成等差数列.
(1)求等比数列{an}的通项公式;
(2)对n∈N+,在an与an+1之间插入3n个数,使这个3n+2个数成等差数列,记插入的这个3n个数的和为bn,且cn=
3n
4bn
.求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-ax+ex,x∈R
(1)若a=e,求函数f(x)的单调区间;
(2)若a>0,且对于任意x>0不等式f(x)>0恒成立,试确定实数a的取值范围;
(3)构造函数F(x)=f(x)+f(-x)(x>0),求证:F(1)F(2)…F(2014)>(e2015+2)1007

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求C
 
2
2
+C
 
2
3
+C
 
2
4
+…+C
 
2
10

(2)已知A
 
3
n
=C
 
4
n
,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=
 

查看答案和解析>>

同步练习册答案