精英家教网 > 高中数学 > 题目详情
7.如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为16π.

分析 由三视图知,该几何体是一个侧面与底面垂直的三棱锥,画出直观图,求出三棱锥外接球的球心与半径,从而求出外接球的表面积.

解答 解:由已知可得该几何体是有一个侧面PAC垂直于底面,高为 2,
底面是一个等腰直角三角形的三棱锥,如图.
则这个几何体的外接球的球心O在高线PD上,
∵PD=BD=2,
∴由勾股定理可得R2=4+(2-R)2,∴R=2,
即球心O为AC的中点,
则这个几何体的外接球的表面积为S=4πR2=4π×22=16π.
故答案为:16π

点评 本题考查了由三视图求几何体外接球的表面积,解题的关键是判断几何体的形状及外接球的半径,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.利用计算机产生0~2之间的均匀随机数a,则事件“3a-2<0”发生的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}中,Sn=$\frac{1}{2}$n2+$\frac{1}{2}$n.
(1)求{an}的an
(2)求T=$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知θ角的终边与480°角的终边关于x轴对称,点P(x,y)在θ角的终边上(不是原点),则$\frac{xy}{{x}^{2}+{y}^{2}}$的值等于$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,网格纸上小正方形的边长为1,粗线画出的是正方体被两个平面所截得到的某几何体的三视图,则该几何体的体积为(  )
A.$\frac{16}{3}$B.6C.$\frac{20}{3}$D.$\frac{22}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-t-lnx
(Ⅰ)若x=1是f(x)的极值点,求t的值,并讨论f(x)的单调性;
(Ⅱ)当t≤2时,证明:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a>0,b>0,且a+b=1,求证:
(Ⅰ)$\frac{1}{a}+\frac{1}{b}≥4$;
(Ⅱ)(a+$\frac{1}{a}$)2+(b+$\frac{1}{b}$)2≥$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线方程:x2-$\frac{y^2}{3}$=1,则以A(2,1)为中点的弦所在直线l的方程是(  )
A.6x+y-11=0B.6x-y-11=0C.x-6y-11=0D.x+6y+11=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下面使用类比推理正确的是(  )
A.直线a,b,c,若a∥b,b∥c,则a∥c,类推出:向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,则$\overrightarrow a$∥$\overrightarrow c$
B.同一平面内,直线a,b,c,若a⊥c,b⊥c,则a∥b,类推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a∥b
C.实数a,b,若方程x2+ax+b=0有实数根,则a2≥4b,类推出:复数a,b,若方程x2+ax+b=0有实数根,则a2≥4b
D.由向量加法的几何意义,可以类比得到复数加法的几何意义

查看答案和解析>>

同步练习册答案