精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程是是参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,其倾斜角为

)证明直线恒过定点,并写出直线的参数方程;

)在()的条件下,若直线与曲线交于两点,求的值.

【答案】)证明见解析,是参数);(

【解析】

1)利用极坐标与直角坐标的互化将直线方程化为普通方程,从而可求出定点,再将直线方程写成参数方程的形式即可.

2)将曲线化为直角坐标方程,再将直线的参数方程代入曲线方程,整理成关于的一元二次方程的形式,利用韦达定理以及参数的几何意义即可求解.

)由极坐标与直角坐标互化公式

可得直线的方程为:,即

故直线恒过定点

所以直线的参数方程为是参数)

)由曲线的参数方程是参数)

得曲线的普通方程:,即

代入上式整理得:

设两根为,则

两点对应的参数分别为,故

的值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列四个命题,其中正确的是(

A.对分类变量的随机变量的观测值来说,越小,有关系可信程度越大

B.残差点比较均匀地落在水平带状区域内,带状区域越窄,则模型拟合精度越高

C.相关指数越小,则残差平方和越大,模型的拟合效果越好

D.两个随机变量相关性越强,则相关系数的绝对值越接近

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数在其定义域内单调递增,求实数的最大值;

2)若存在正实数对,使得当时,能成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应党的十九大所提出的教育教学改革,某校启动了数学教学方法的探索,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班40人,甲班按原有传统模式教学,乙班实施自主学习模式.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在,按照区间进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.

0.10

0.05

0.025

2.706

3.841

5.024

1)完成表格,并判断是否有以上的把握认为数学成绩优秀与教学改革有关

甲班

乙班

合计

大于等于80分的人数

小于80分的人数

合计

2)从乙班分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自发言的人数为随机变量,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为.

(1)求实数的值;

(2)若有两个极值点,求的取值范围并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年10月中上旬是小麦的最佳种植时间,但小麦的发芽会受到土壤、气候等多方面因素的影响.某科技小组为了解昼夜温差的大小与小麦发芽的多少之间的关系,在不同的温差下统计了100颗小麦种子的发芽数,得到了如下数据:

温差

8

10

11

12

13

发芽数(颗)

79

81

85

86

90

(1)请根据统计的最后三组数据,求出关于的线性回归方程

(2)若由(1)中的线性回归方程得到的估计值与前两组数据的实际值误差均不超过两颗,则认为线性回归方程是可靠的,试判断(1)中得到的线性回归方程是否可靠;

(3)若100颗小麦种子的发芽率为颗,则记为的发芽率,当发芽率为时,平均每亩地的收益为元,某农场有土地10万亩,小麦种植期间昼夜温差大约为,根据(1)中得到的线性回归方程估计该农场种植小麦所获得的收益.

附:在线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,左、右焦点分别为,离心率为是椭圆上的一个动点(不与左、右顶点重合),且的周长为6,点关于原点的对称点为,直线交于点.

1)求椭圆方程;

2)若直线与椭圆交于另一点,且,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,,侧面底面

(1)作出平面与平面的交线,并证明平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为是椭圆上一点,且面积的最大值为1.

1)求椭圆的方程;

2)过的直线交椭圆于两点,求的取值范围;

查看答案和解析>>

同步练习册答案