【题目】已知函数
.
(1)若函数
在其定义域内单调递增,求实数
的最大值;
(2)若存在正实数对
,使得当
时,
能成立,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知抛物线
的内接等边三角形
的面积为
(其中
为坐标原点).
(1)试求抛物线
的方程;
(2)已知点
两点在抛物线
上,
是以点
为直角顶点的直角三角形.
①求证:直线
恒过定点;
②过点
作直线
的垂线交
于点
,试求点
的轨迹方程,并说明其轨迹是何种曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
(
),圆
(
),若圆
的一条切线
与椭圆
相交于
两点.
(1)当
,
时,若点
都在坐标轴的正半轴上,求椭圆
的方程;
(2)若以
为直径的圆经过坐标原点
,探究
是否满足
,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为![]()
(1)在曲线
上任取一点
,连接
,在射线
上取一点
,使
,求
点轨迹的极坐标方程;
(2)在曲线
上任取一点
,在曲线
上任取一点
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
是边长为2的等边三角形,
,
,
.
![]()
(1)证明:平面
平面
;
(2)
,
分别是
,
的中点,
是线段
上的动点,若二面角
的平面角的大小为
,试确定点
的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点到准线的距离为
,直线
与抛物线
交于
,
两点,过这两点分别作抛物线
的切线,且这两条切线相交于点
.
(1)若点
的坐标为
,求
的值;
(2)设线段
的中点为
,过
的直线
与线段
为直径的圆相切,切点为
,且直线
与抛物线
交于
,
两点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点到准线的距离为
,直线
与抛物线
交于
,
两点,过这两点分别作抛物线
的切线,且这两条切线相交于点
.
(1)若点
的坐标为
,求
的值;
(2)设线段
的中点为
,过
的直线
与线段
为直径的圆相切,切点为
,且直线
与抛物线
交于
,
两点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程是
(
是参数).以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
,其倾斜角为
.
(Ⅰ)证明直线
恒过定点
,并写出直线
的参数方程;
(Ⅱ)在(Ⅰ)的条件下,若直线
与曲线
交于
,
两点,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com