【题目】如图,在三棱柱中,是边长为2的等边三角形,,,.
(1)证明:平面平面;
(2),分别是,的中点,是线段上的动点,若二面角的平面角的大小为,试确定点的位置.
【答案】(1)证明见解析;(2)为线段上靠近点的四等分点,且坐标为
【解析】
(1)先通过线面垂直的判定定理证明平面,再根据面面垂直的判定定理即可证明;
(2)分析位置关系并建立空间直角坐标系,根据二面角的余弦值与平面法向量夹角的余弦值之间的关系,即可计算出的坐标从而位置可确定.
(1)证明:因为,,,
所以,即.
又因为,,所以,
,所以平面.
因为平面,所以平面平面.
(2)解:连接,因为,是的中点,所以.
由(1)知,平面平面,所以平面.
以为原点建立如图所示的空间直角坐标系,
则平面的一个法向量是,,,.
设,,
,,
代入上式得,,,所以.
设平面的一个法向量为,,,
由,得.
令,得.
因为二面角的平面角的大小为,
所以,即,解得.
所以点为线段上靠近点的四等分点,且坐标为.
科目:高中数学 来源: 题型:
【题目】为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.
(1)求的值;
(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?
文科生 | 理科生 | 合计 | |
获奖 | 6 | ||
不获奖 | |||
合计 | 400 |
(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在两种设备上加工,生产一件甲产品需用设备2小时, 设备6小时;生产一件乙产品需用设备3小时, 设备1小时. 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )
A. 320千元 B. 360千元 C. 400千元 D. 440千元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市2019年引进天然气作为能源,并将该项目工程承包给中昱公司.已知中昱公司为该市铺设天然气管道的固定成本为35万元,每年的管道维修此用为5万元.此外,该市若开通千户使用天然气用户,公司每年还需投入成本万元,且.通过市场调研,公司决定从每户天然气新用户征收开户费用2500元,且用户开通天然气后,公司每年平均从每户使用天然气的过程中获利360元.
(1)设该市2019年共发展使用天然气用户千户,求中昱公司这一年利润(万元)关于的函数关系式;
(2)在(1)的条件下,当等于多少最大?且最大值为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某啤酒厂要将一批鲜啤酒用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,运费由厂家承担.若厂家恰能在约定日期(×月×日)将啤酒送到,则城市乙的销售商一次性支付给厂家40万元;若在约定日期前送到,每提前一天销售商将多支付给厂家2万;若在约定日期后送到,每迟到一天销售商将少支付给厂家2万元.为保证啤酒新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送.已知下表内的信息:
汽车行驶路线 | 在不堵车的情况下到达城市乙所需时间(天) | 在堵车的情况下到达城市乙所需时间(天) | 堵车的概率 | 运费(万元) |
公路1 | 1 | 4 | 2 | |
公路2 | 2 | 3 | 1 |
(1)记汽车选择公路1运送啤酒时厂家获得的毛收入为X(单位:万元),求X的分布列和EX;
(2)若,,选择哪条公路运送啤酒厂家获得的毛收人更多?
(注:毛收入=销售商支付给厂家的费用-运费).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com