精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的前n项和Sn,a1=2,2Sn=(n+1)an-n2an+1,数列{bn}满足b1=1,bnbn+1=λ•2an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在正实数λ,使得{bn}为等比数列?并说明理由.

分析 (Ⅰ)根据递推公式,得到2an=an+1+an-1,继而得到数列{an}为等差数列,求出公差d,即可求出数列{an}的通项公式,
(Ⅱ)根据递推公式,得到bn+2=4bn,求出b2,b3,若{bn}为等比数列,则满足(b22=b3•b1,继而求出正实数λ.

解答 解:(Ⅰ)由2Sn=(n+1)2an-n2an+1,得到2Sn-1=n2an-1-(n-1)2an
∴2an=(n+1)2an-n2an+1-n2an-1+(n-1)2an
∴2an=an+1+an-1
∴数列{an}为等差数列,
∵2S1=(1+1)2a1-a2
∴4=8-a2
∴a2=4,
∴d=a2-a1=4-2=2,
∴an=2+2(n-1)=2n,
(Ⅱ)由题设,${b_n}{b_{n+1}}=λ•{2^{a_n}},{b_{n+1}}{b_{n+2}}=λ•{2^{{a_{n+1}}}}$,
两式相除可得bn+2=4bn
即{b2n}和{b2n-1}都是以4为公比的等比数列.
因为${b_1}b{\;}_2=λ•{2^{a_1}}=4λ,b{\;}_1=1$,
所以b2=4λ,由b3=4b1=4及${b_2}^2={b_1}{b_3}$,可得4λ2=1,
又λ>0,所以$λ=\frac{1}{2}$.
所以${b_{2n}}=2•{4^{n-1}}={2^{2n-1}},{b_{2n-1}}={2^{2n-2}}$,
即${b_n}={2^{n-1}}$,则bn+1=2bn
因此存在$λ=\frac{1}{2}$,使得数列{bn}为等比数列.

点评 本题考查了数列的递推公式和等差数列等比数列的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.定义在R上的函数y=f(x)是减函数,且函数y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2).则当1≤s≤4时,S-2t的最小值为是-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法中正确的是(  )
A.若命题P:?x0∈R,x02-x0+1<0,则¬P:?x∉R,x2-x+1≥0
B.命题“若圆C:(x-m+1)2+(y-m)2=1与两坐标轴都有公共点,则实数m∈[0,1]”的逆否命题为真命题
C.已知相关变量(x,y)满足回归方程$\widehat{y}$=2-3x,若变量x增加一个单位,则y平均增加3个单位
D.已知随机变量X~N(2,σ2),若P(X<a)=0.32,则P(X>4-a)=0.68

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{ln(1-x),x<1}\\{\frac{2}{x-1},x>1}\end{array}\right.$,g(x)=$\frac{k}{{x}^{2}}$(k>0),对任意p∈(1,+∞),总存在实数m,n满足m<0<n<p,使得f(p)=f(m)=g(n),则整数k的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)=$\left\{{\begin{array}{l}{sinx,x∈[0,1]}\\{{x^2},x∈[1,2]}\end{array}}$,则$\int_0^2$f(x)dx等于(  )
A.$\frac{7}{3}$-cos1B.$\frac{10}{3}$-cos1C.$\frac{7}{3}$+cos1D.$\frac{10}{3}$+cos1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列能保证a⊥∂(a,b,c为直线,∂为平面)的条件是(  )
A.b,c?∂.a⊥b,a⊥cB.b,c?∂.a∥b,a∥c
C.b,c?∂.b∩c=A,a⊥b,a⊥cD.b,c?∂.b∥c,a⊥b,a⊥c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a为实数,命题“任意x∈[0,4],x2-2a-8≤0”为真命题的充要条件是(  )
A.a≥8B.a<8C.a≥4D.a<4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于定义域为R的函数f(x),若存在实数x0,使得f(x0)=x0,则称x0是函数f(x)的一个不动点.若二次函数f(x)=x2-3x+a存在不动点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.三棱锥P-ABC中,PA⊥平面ABC,PA=2BC=4$\sqrt{3}$,AB=2,∠BAC=60°,则其外接球的表面积为(  )
A.B.12πC.16πD.64π

查看答案和解析>>

同步练习册答案