精英家教网 > 高中数学 > 题目详情
6.如图所示,在△OAB中,M、N分别是OA、OB的中点,点P在梯形ABNM区域(含边界)上移动,且$\overrightarrow{OP}=x\overrightarrow{OM}+y\overrightarrow{ON}$,则4x+3y的取值范围是[3,8].

分析 根据P的位置分类讨论,利用向量的三角形法即可得解.

解答 解:P在MN上,可证:x+y=1,可得:4x+3y=4x+3-3x=x+3,x=0时,最小3,
P在AB上,可证:x+y=2,可得:4x+3y=4x+3(2-x)=x+6,x=2时,最大8,
则P落在阴影内,则有1<4x+3y<2.
故4x+3y的取值范围是[3,8],
故答案为:[3,8].

点评 本题考查向量的三角形法则,向量是数形结合的最好的工具,在解题时注意发挥向量的优点,考查了转化思想和数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

下列函数中,既是奇函数,又在上为增函数的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设a1,a2,a3为正数,求证:$\frac{{a}_{1}{a}_{2}}{{a}_{3}}$+$\frac{{a}_{2}{a}_{3}}{{a}_{1}}$+$\frac{{a}_{3}{a}_{1}}{{a}_{2}}$≥a1+a2+a3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知正三棱柱ABC-A1B1C1的底面边长是2,D是侧棱CC1的中点,直线AD与侧BB1C1C所成的角为45°.
(1)求此正三棱柱的侧棱长;
(2)求二面角A-BD-C的平面角的正切值;
(3)求点C到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足点{an,an+1)在直线y=2x+1上,且a1=1.
(1)求数列{an}的通项公式an和Sn
(2)若bn=(an+1)log${\;}_{\frac{1}{2}}$(an+1),(n∈N*),设数列{bn}的前n项和为Tn,求使Tn+n•2n+1>50成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点A(2,0)B(0,-4)
(1)写出△AOB的外接圆方程
(2)设直线l:3x-4y-1=0与△AOB的外接圆交于A,B两点,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)≤0.对任意正数a,b,若a<b,则必有(  )
A.bf(a)≤af(b)B.af(b)≤bf(a)C.bf(a)≤f(a)D.af(a)≤f(b)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥P-ABCD中,PB⊥底面ABCD.底面ABCD为直角梯形,∠ABC=90°,AD∥BC,BC=2,AB=AD=PB=1,点E为棱PA的中点.
(Ⅰ)求证:CD⊥平面PBD;
(Ⅱ)求二面角A-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,单摆的摆线离开平衡位置的位移S(厘米)和时间t(秒)的函数关系是S=$\frac{1}{2}$sin(2t+$\frac{π}{3}$),则摆球往复摆动一次所需要的时间是π秒.

查看答案和解析>>

同步练习册答案