精英家教网 > 高中数学 > 题目详情
6.若x,y满足$\left\{\begin{array}{l}x+y≥0\\ x≥1\\ x-y≥0\end{array}\right.$,则下列不等式恒成立的是(  )
A.y≥-1B.x≥2C.x+2y+2≥0D.2x-y+1≥0

分析 由约束条件作出可行域,作出四个选项中不等式所对应的直线,由图可得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x+y≥0\\ x≥1\\ x-y≥0\end{array}\right.$作出可行域如图,

由图可知,对可行域内的点不等式恒成立的是2x-y+1=0.
故选:D.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(文)试卷(解析版) 题型:选择题

已知单位向量的夹角为,且,若,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,输出的S为(  )
A.-1006B.1007C.-1008D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是(  )
A.$\frac{10}{3}$B.3C.$\frac{14}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a,b∈R,函数f(x)=-$\frac{1}{3}{x}^{3}+\frac{a}{2}{x}^{2}+bx$有两个极值点x1,x2(x1<x2),f(x2)=x2,则方程f2(x)-af(x)-b=0的实根个数(  )
A.4B.3C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,椭圆C的左、右焦点分别为F1、F2,过F2的直线l交C于A,B两点,△ABF1的周长为8,且F2与抛物线y2=4x的焦点重合.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l交y轴于点M,且$\overrightarrow{MA}$=λ$\overrightarrow{A{F}_{2}}$,$\overrightarrow{MB}$=μ$\overrightarrow{B{F}_{2}}$,求λ+μ的值;
(Ⅲ)是否存在实数t,使得|AF2|+|BF2|=t|AF2|•|BF2|恒成立?若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆(x+1)2+y2=4的圆心为C,点P是直线l:mx-y-5m+4=0上的点,若该圆上存在点Q使得∠CPQ=30°,则实数m的取值范围为(  )
A.[-1,1]B.[-2,2]C.$[{\frac{{\sqrt{3}-3}}{4},\frac{{\sqrt{3}+3}}{4}}]$D.$[{0,\frac{12}{5}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.抛物线C:x2=4y,直线l1:y=kx交C于点A,交准线于点M.过点M的直线l2与抛物线C有唯一的公共点B(A,B在对称轴的两侧),且与x轴交于点N.
(Ⅰ)求抛物线C的准线方程;
(Ⅱ)求S△AOB:S△MON的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱锥P-ABC中,PA=PB=2,PC=4,∠APB=∠BPC=60°,cos∠APC=$\frac{1}{4}$.
(Ⅰ)平面PAB⊥平面PBC;
(Ⅱ)E为BC上的一点.若直线AE与平面PBC所成的角为30°,求BE的长.

查看答案和解析>>

同步练习册答案