| A. | [-1,1] | B. | [-2,2] | C. | $[{\frac{{\sqrt{3}-3}}{4},\frac{{\sqrt{3}+3}}{4}}]$ | D. | $[{0,\frac{12}{5}}]$ |
分析 由题意,从直线上的点向圆上的点连线成角,当且仅当两条线均为切线时才是最大的角,此时CP=4,利用圆上存在点Q使得∠CPQ=30°,可得圆心到直线的距离d=$\frac{|-6m+4|}{\sqrt{{m}^{2}+1}}$≤4,进而得出答案.
解答 解:由题意,从直线上的点向圆上的点连线成角,当且仅当两条线均为切线时才是最大的角,此时CP=4.
∵圆上存在点Q使得∠CPQ=30°,
∴圆心到直线的距离d=$\frac{|-6m+4|}{\sqrt{{m}^{2}+1}}$≤4,
∴0≤m≤$\frac{12}{5}$,
故选:D.
点评 本题考查了直线与圆相切的性质、点到直线的距离的计算公式、数形结合思想方法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | f(x)为偶函数 | B. | f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上单调递增 | ||
| C. | x=$\frac{π}{2}$为f(x)的图象的一条对称轴 | D. | ($\frac{π}{2}$,0)为f(x)的图象的一个对称中心 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y≥-1 | B. | x≥2 | C. | x+2y+2≥0 | D. | 2x-y+1≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com