精英家教网 > 高中数学 > 题目详情
四棱锥S-ABCD的底面是菱形,SD⊥平面ABCD,点E是SD的中点.
(Ⅰ)求证:SB∥平面EAC;
(Ⅱ)求证:平面SAC⊥平面SBD.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(Ⅰ)连结AC,BD,交于点O,连结OE,由三角形中位线得OE∥SB,由此能证明SB∥平面EAC.
(Ⅱ)由菱形性质得AC⊥BD,由线面垂直得SD⊥AC,由此能证明平面SAC⊥平面SBD.
解答: 证明:(Ⅰ)连结AC,BD,交于点O,连结OE,
∵ABCD是菱形,∴O是AC中点,
又E是SD中点,∴OE∥SB,
∵OE?平面AEC,SB?平面AEC,
∴SB∥平面EAC.
(Ⅱ)∵ABCD是菱形,∴AC⊥BD,
∵SD⊥平面ABCD,AC?平面ABCD,
∴SD⊥AC,
∵SD∩BD=D,
∴AC⊥平面SBD,
∵AC?平面SAC,∴平面SAC⊥平面SBD.
点评:本题考查直线与平面平行的证明,考查平面与平面垂直的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知AB⊥面ACD,DE⊥面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点,
(1)求证:AF∥面BCE;
(2)求二面角A-CE-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,点(an+2,Sn+1)在直线y=4x-5上,其中n∈N*,令bn=an+1-2an,且 a1=1.
(1)求{bn}的通项公式;
(2)若存在数列{Cn}满足等式:bn=
C1
1
+
C2
2
+
C3
3
+…+
Cn
n
(n∈N*),求{Cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.
(1)证明:BD⊥AA1
(2)求二面角A1-C1D-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),x∈D,若存在x1、x2∈D,对任意的x∈D,都有f(x1)≤f(x)≤f(x2),则称f(x)为“幅度函数”,其中f(x2)-f(x1)称为f(x)在D上的“幅度”.
(1)判断函数f(x)=
3-2x-x2
是否为“幅度函数”,如果是,写出其“幅度”;
(2)已知x(y-1)-2n-1y+2n=0(x∈Z,n为正整数),记y关于x的函数的“幅度”为bn,求数列{bn}的前n项和Sn
(3)在(2)的条件下,令g(n)=lg
2
bn+1
+lg
2
bn+2
+…+lg
2
b2n
,求g(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,且a2+a4=2a3+4,其中n∈N*
(1)求数列{an}的通项公式;
(2)令bn=
2n-1
(an-1)(2an-1)
,记数列{bn}的前n项和为Sn,其中n∈N*,求证:
1
3
≤Sn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,除棱PC外,其余棱均等长,M为棱AB的中点,O为线段MC上靠近点M的三等分点.
(1)若PO⊥MC,求证:PO⊥平面ABC;
(2)试在平面PAB上确定一点Q,使得OQ∥平面PAC,且OQ∥平面PBC,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三角形的两个顶点是O(0,0)和A(6,0),则它的外接圆的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ln(4x-x2)的定义域为A,B=(-∞,-1]∪[3,+∞),则A∩B=
 

查看答案和解析>>

同步练习册答案