精英家教网 > 高中数学 > 题目详情
如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.
(1)证明:BD⊥AA1
(2)求二面角A1-C1D-B的平面角的余弦值.
考点:与二面角有关的立体几何综合题,空间中直线与直线之间的位置关系
专题:综合题,空间位置关系与距离,空间角
分析:(1)连接BD交AC于O,则BD⊥AC,连接A1O,可证A1O⊥底面ABCD,从而建立空间直角坐标系,求出向量的坐标,证明向量的数量积为0 即可得到BD⊥AA1
(2)确定平面A1C1D、平面BC1D的法向量,利用向量的夹角公式,可求二面角A1-C1D-B的平面角的余弦值.
解答: (1)证明:连接BD交AC于O,则BD⊥AC,连接A1O,
在△AA1O中,AA1=2,AO=1,∠A1AO=60°
∴A1O2=AA12+AO2-2AA1•AOcos60°=3
∴AO2+A1O2=AA12
∴A1O⊥AO,
∵平面AA1C1C⊥平面ABCD,平面AA1C1C∩平面ABCD=AO
∴A1O⊥底面ABCD
∴以OB、OC、OA1所在直线为x轴、y轴、z轴建立如图所示空间直角坐标系,
则A(0,-1,0),B(
3
,0,0),C(0,1,0),D(-
3
,0,0),
A1(0,0,
3
)                         
BD
=(-2
3
,0,0),
AA1
=(0,1,
3
),
BD
AA1
=0
∴BD⊥AA1
(2)设平面A1C1D的一个法向量为
n
=(x,y,z),则
A1C1
=(0,2,0),
A1D
=(-
3
,0,-
3
),
2y=0
-
3
x-
3
z=0
,∴
n
=(1,0,-1)
同理平面BC1D的一个法向量为为
m
=(0,
3
,-2),
∴cos<
n
m
>=
2
2
7
=
14
7
点评:本题考查线面位置关系,考查面面角,考查利用向量方法解决立体几何问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD.PA=AB=2,∠BAD=120°,E是PC上的一点,且BE与平面PAB所成角的正弦值为
3
4

(1)证明:E为PC的中点;
(2)求二面角A-BE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2,n∈N*,数列{bn}满足:bn=2n•an,且{bn}的前n项和记为Tn
(1)求数列{an}与{bn}的通项公式;
(2)证明:对任意n∈N*,Tn≥2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心坐标为(2,2),且和直线3x+4y-9=0相切.
(1)求圆C的方程;
(2)是否存在实数a,使圆C与直线x-y+a=0交于A、B两点,且满足∠AOB=90°.若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间D上,如果函数f(x)为增函数,而函数
1
x
f(x)也是增函数,则称函数f(x)为区间D上的“和谐”函数.已知函数f(x)=1-
1
x

(Ⅰ)判断函数f(x)在区间[
1
4
9
4
]上是否为“和谐”函数;
(Ⅱ)若P是函数f(x)图象上的任一点,求点P到直线x-2y=0的最短距离;
(Ⅲ)当x∈[
1
4
9
4
]时,不等式1-ax≤
1
x
≤1+2ax恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax+b,a,b∈R的图象记为曲线E,过一点A(
1
2
,-
3
8
)作曲线E的切线,这样的切线有且仅有两条.
(Ⅰ)求a+2b的值;
(Ⅱ)若点A在曲线E上,对任意的x∈[0,1],求证:f(x)+|a+3b+1|+
1
2
≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥S-ABCD的底面是菱形,SD⊥平面ABCD,点E是SD的中点.
(Ⅰ)求证:SB∥平面EAC;
(Ⅱ)求证:平面SAC⊥平面SBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

公比为正的等比数列{an}的前n项和为Sn,且2a1+a2=a3,S3+2=a4
(1)求数列{an}的通项公式;
(2)令bn=log2an,数列{
1
b nb n+1
}的前n项和为Tn,求T2013的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和Sn=2n2-3n+1,则a4+a5+…+a10=
 

查看答案和解析>>

同步练习册答案