精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD.PA=AB=2,∠BAD=120°,E是PC上的一点,且BE与平面PAB所成角的正弦值为
3
4

(1)证明:E为PC的中点;
(2)求二面角A-BE-C的大小.
考点:与二面角有关的立体几何综合题
专题:空间位置关系与距离,空间角
分析:(1)设对角线交点为O,以O为原点,OC、OD、OP分别为x轴y轴z轴建立空间直角坐标系O-xyz,利用向量法能证明E为PC的中点.
(2)求出平面ABE的一个法向量和平面BEC的一个法向量,利用向量法能求出二面角A-BE-C的大小.
解答: (1)证明:∵ABCD为菱形,∴AC⊥BD,
设对角线交点为O,由平面几何知识知:AC=2,BD=2
3

以O为原点,OC、OD、OP分别为x轴y轴z轴建立空间直角坐标系O-xyz
A(1,0,0)、B(0,-
3
,0)C(1,0,0)P(-1,0,2)
…(2分)
AB
=(1,-
3
,0),
AP
=(0,0,2)

设平面PAB的一个法向量
m
=(x,y,z)

AB
m
=0
AP
m
=0
x-
3
y=0
2z=0
m
=(
3
,1,0)
.…(3分)
PE
EC
(λ>0),则E(
λ-1
λ+1
3
2
λ+1
)

BE
=(
λ-1
λ+1
3
2
λ+1
)

由已知
3
4
=|cos<
m
BE
>|=
|
BE
m
|
|
BE
||
m
|
.…(4分)
3
4
=
|
3
λ-
3
λ+1
+
3
|
(
λ-1
λ+1
)
2
+(
3
)
2
+(
2
λ+1
)
2
×2

解得:λ=1或λ=-2(舍去)…(5分)
即E为PC的中点.…(6分)
(2)解:由(1)知
BE
=(0,
3
,1)
,又
AB
=(1,-
3
,0)

设平面ABE的一个法向量
n1
=(x1y1z1)

BE
n1
=0
AB
n1
=0
3
y1+z1=0
x1-
3
y1=0
n1
=(
3
,1,-
3
)
…(8分)
BC
=(1,
3
,0)

设平面BEC的一个法向量
n2
=(x2y2z2)

BE
n2
=0
BC
n2
=0
3
y2+z2=0
x2-
3
y2=0
n2
=(
3
,-1,
3
)
…(10分)
|cos<
n1
n2
>|=
|
n1
n2
|
|
n1
||
n2
|
=
|
3
×
3
+1×(-1)+(-
3
3
|
7
×
7
=
1
7
…(11分)
又∵二面角A-BE-C为钝角,
∴二面角A-BE-C的大小为arccos(-
1
7
)
.…(12分)
点评:本题考查点是线段中点的证明,考查二面角的大小的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
1-x2,x≤1
f(x-2),x>1
,若方程f(x)=mx恰有四个不同的实数根,则实数m的取值范围为(  )
A、(8-2
15
,4-2
3
B、(4+2
3
,8+2
15
C、(4-2
3
,8+2
15
D、(8-2
15
,4+2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵M=(
10
0-1
),N=(
12
34
).
(Ⅰ)求使得MX=N成立的二阶矩阵X;
(Ⅱ)求矩阵X的特征值以及每个特征值所对应的一个特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

五个人站成一排,求在下列条件下的不同排法种数:(用数字作答)
(1)甲、乙两人相邻;   
(2)甲、乙两人不相邻;
(3)甲不在排头,并且乙不在排尾;
(4)甲在乙前,并且乙在丙前.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司今年年初用36万元引进一种新的设备,投入设备后每年收益为21万元.同时,公司每年需要付出设备的维修和工人工资等费用,第一年各种费用2万元,第二年各种费用4万元,以后每年各种费用都增加2万元.
(1)引进这种设备后,第几年后该公司开始获利;
(2)这种设备使用多少年,该公司的年平均获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

10名学生分成3组,其中一组4人,另两组3人但正副班长不能分在同一组,有多少种不同的分组方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥面ACD,DE⊥面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点,
(1)求证:AF∥面BCE;
(2)求二面角A-CE-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班数学老师对班上50名同学一次考试的数学成绩进行统计,得到如下统计表:
分数段[30,50)[50,70)[70,90)[90,110)[110,130)[130,150]
人数2a121610c
频率0.040.160.240.32bd
(1)求表中a,b,c的值,并估计该班的平均分x;
(2)若该老师想在低于70分的所有同学中随机挑选3位同学了解学习情况,记X为所选3人中分数在[30,50)的同学的人数,求X的概率分布列和均值EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.
(1)证明:BD⊥AA1
(2)求二面角A1-C1D-B的平面角的余弦值.

查看答案和解析>>

同步练习册答案