精英家教网 > 高中数学 > 题目详情
4.若函数f(x)=$\sqrt{1-{x}^{2}}$-x+λ在[-1,1]上有两个不同的零点,则λ的取值范围为(  )
A.[1,$\sqrt{2}$)B.(-$\sqrt{2}$,$\sqrt{2}$)C.(-$\sqrt{2}$,-1]D.[-1,1]

分析 构造函数函数f(x)=$\sqrt{1-{x}^{2}}$-x+λ在[-1,1]上有两个不同的零点,
转化为直线y=x-λ与y=$\sqrt{{1-x}^{2}}$有2个交点,画出图象判断即可.

解答 解:∵函数f(x)=$\sqrt{1-{x}^{2}}$-x+λ在[-1,1]上有两个不同的零点,
∴直线y=x-λ与y=$\sqrt{{1-x}^{2}}$有2个交点,

即1$≤-λ<\sqrt{2}$

∴$-\sqrt{2}<$λ≤-1
故选:C

点评 本题考查了函数零点,数形结合的思想,不等式的运用,关键划出图象,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}2(1-x),0≤x≤1\\ x-1,1<x≤2\end{array}$如果对任意的n∈N*,定义fn(x)=$\underbrace{f\{f[{f…f(x)}]\}}_{n个f}$,例如:f2(x)=f(f(x)),那么f2016(2)的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=${({\frac{1}{2}})^{2{x^2}-3x+1}}$的递减区间为(  )
A.(1,+∞)B.(-∞,$\frac{3}{4}$]C.(-∞,1)D.[$\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{|lgx|,0<x≤10}\\{-\frac{1}{10}x+2,x>10}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是(10,20).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=ln(-x2+2x+8)的单调递增区间是(  )
A.(-∞,1)B.(-2,1)C.(1,4)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+3a,x<0\\{log_a}({x+1})+1,x≥0\end{array}$(a>0且a≠1)在R上单调递减,且关于x的方程|f(x)|=2-x恰好有两个不相等的实数解,则a的取值范围是$[{\frac{1}{3},\frac{2}{3}}]∪\left\{{\frac{3}{4}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合A=(-2,4),B=(-∞,a],若A∩B=∅,则实数a的取值范围是a≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一个圆锥的底面半径为2cm,高为6cm,在其中有一个高为xcm的内接圆柱.
(1)当x为何值时,圆柱侧面积最大?并求出最大值.
(2)设内接圆柱底面圆的直径为a,母线长为b,圆锥的母线长为c,请设计一个算法,当输入实数a,b,c,要求输出这三个数中最大的数,请写出算法并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=\frac{{\sqrt{x+4}+\sqrt{1-2x}}}{{{x^2}-1}}$的定义域为(  )
A.$[-4,-1)∪(-1,\frac{1}{2}]$B.[-4,-1)∪(-1,1)C.$[\frac{1}{2},1)∪(1,+∞)$D.[-4,1)∪(1,+∞)

查看答案和解析>>

同步练习册答案