精英家教网 > 高中数学 > 题目详情
4.在△ABC中,角A,B,C所对的边分别为a,b,c,cos2A=1-3cosA.
(1)求角A;
(2)若2sinC=3sinB,△ABC的面积$S=6\sqrt{3}$,求a.

分析 (1)由二倍角的余弦公式化简已知整理可得:2cos2A+3cosA-2=0,从而解得cosA=-2(舍去)或$\frac{1}{2}$,结合A的范围即可得解.
(2)由$S=6\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc×$\frac{\sqrt{3}}{2}$,可解得:bc=24①,由2sinC=3sinB及正弦定理可得:2c=3b②,由①②联立可解得b,c,由余弦定理即可解得a的值.

解答 解:(1)∵cos2A=1-3cosA.
∴2cos2A-1=1-3cosA,整理可得:2cos2A+3cosA-2=0,
∴解得:cosA=-2(舍去)或$\frac{1}{2}$,
∵0<A<π,
∴A=$\frac{π}{3}$.(6分)
(2)∵$S=6\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bc×$\frac{\sqrt{3}}{2}$,可解得:bc=24①
∵2sinC=3sinB,由正弦定理可得:2c=3b②,
∴由①②联立可解得:b=4,c=6,
∴由余弦定理可得:a2=b2+c2-2bccosA=36+16-24=28.
∴可解得:$a=2\sqrt{7}$(14分)

点评 本题主要考查了正弦定理,余弦定理,三角形面积公式,二倍角的余弦公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在数轴上表示不等式组$\left\{\begin{array}{l}{1+x>0}\\{2x-4≤0}\end{array}\right.$的解集,正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“?x≥0,|x|+x≥0”的否定是(  )
A.?x≥0,|x0|+x0<0B.?x<0,|x|+x≥0C.?x0≥0,|x0|+x0<0D.?x0<0,|x|+x≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和Sn,a1=-$\frac{2}{3}$,Sn+$\frac{1}{S_n}+2={a_n}$(n≥2).
(1)计算S1,S2,S3,猜想Sn的表达式并用数学归纳法证明;
(2)设bn=$\frac{S_n}{{{n^2}+n}}$,数列的{bn}的前n项和为Tn,求证:Tn>-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.证明:
(1)(x-$\frac{1}{x}$)2n的展开式中常数项是(-2)n$\frac{1×3×5×…×(2n-1)}{n!}$.
(2)(1+x)2n的展开式的中间一项是$\frac{1×3×5×…×(2n-1)}{n!}$(2x)n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.△ABC的外接圆圆心为O,半径为2,$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow 0$,且|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|,$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影为(  )
A.-3B.-$\sqrt{3}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设复数z=$\frac{2}{1+i}$+(1+i)2,则复数z的共轭复数的模为(  )
A.$\sqrt{2}$B.1C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数2+i与复数$\frac{10}{3+i}$在复平面上的对应点分别是A、B,则∠AOB等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为2+$\sqrt{3}$.

查看答案和解析>>

同步练习册答案