精英家教网 > 高中数学 > 题目详情
10.甲、乙、丙三人独立地去译一个密码,分别译出的概率为$\frac{1}{5}$,$\frac{1}{3}$,$\frac{1}{4}$,则此密码能译出的概率是(  )
A.$\frac{1}{60}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{59}{60}$

分析 此密码能译出是此密码不能译出的对立事件,求出此密码不能译出的概率,利用对立事件的概率减法公式可得答案.

解答 解:∵甲、乙、丙三人独立地去译一个密码,分别译出的概率为$\frac{1}{5}$,$\frac{1}{3}$,$\frac{1}{4}$,
∴此密码不能译出的概率(1-$\frac{1}{5}$)(1-$\frac{1}{3}$)(1-$\frac{1}{4}$)=$\frac{2}{5}$,
故此密码能译出的概率P=1-$\frac{2}{5}$=$\frac{3}{5}$,
故选:C

点评 本题考查的知识点是互斥事件的概率加法公式,相互独立事件的概率乘法公式,对立事件的概率减法公式,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设{an}为等差数列,Sn为数列{an}的前n项和,已知a2+a5=1,S15=75,Tn为数列$\left\{{\frac{S_n}{n}}\right\}$的前n项和(n∈N*).
(1)求Sn
(2)求Tn,及Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:${∫}_{2}^{3}$($\sqrt{x}$+$\frac{1}{\sqrt{x}}$)2dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为(  )
A.$\frac{19}{20}$B.$\frac{19}{400}$C.$\frac{1}{20}$D.$\frac{95}{99}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知θ∈(π,$\frac{3}{2}$π),且sin$\frac{θ}{2}$=$\frac{4}{5}$,求$\frac{sinθ}{1+cosθ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知α∈(-$\frac{π}{2}$,0),sinα+cosα=$\frac{1}{5}$
(1)求sinα-cosα的值;
(2)求$\frac{sin2α+2si{n}^{2}α}{1-tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=a(sinB+cosB).
(1)求角A的大小;
(2)若边a=$\sqrt{2}$,求$\sqrt{2}$b-c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和Sn满足Sn=2an+1(n∈N*),且a1=1,则通项公式an=$\left\{\begin{array}{l}{1,}&{n=1}\\{\frac{1}{2}•(\frac{3}{2})^{n-2},}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列{an}中,a1=1,an+1=$\frac{1}{{a}_{n}}+1$,则a4等于(  )
A.$\frac{5}{3}$B.$\frac{4}{3}$C.1D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案