【题目】若函数对任意,都有,则称函数是“以为界的类斜率函数”.
(1)试判断函数是否为“以为界的类斜率函数”;
(2)若实数,且函数是“以为界的类斜率函数”,求的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x3﹣x2+x.
(1)求函数f(x)在[﹣1,2]上的最大值和最小值;
(2)若函数g(x)=f(x)﹣4x,x∈[﹣3,2],求g(x)的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax﹣a﹣x+2(a>0,且a≠1),若g(2)=a,则f(2)的值为(
A.
B.2
C.
D.a2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )
A. 钱
B. 钱
C. 钱
D. 钱
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面是矩形, 平面, 是等腰三角形, , 是的一个三等分点(靠近点),的延长线与的延长线交于点,连接.
(1)求证: ;
(2)求证:在线段上可以分别找到两点, ,使得直线平面,并分别求出此时的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com