精英家教网 > 高中数学 > 题目详情

【题目】若函数对任意,都有,则称函数是“以为界的类斜率函数”.

(1)试判断函数是否为“以为界的类斜率函数”;

(2)若实数,且函数是“以为界的类斜率函数”,求的取值范围.

【答案】(1) 是“以为界的类斜率函数”.(2)

【解析】试题分析:(1)利用所给新定义直接进行判断即可;(2)易知函数在区间上是增函数,所以等价于.即等价于函数在区间上单调递减。

试题解析:

(1)设

所以对任意

符合题干所给的“以为界的类斜率函数”的定义.

是“以为界的类斜率函数”.

(2)因为,且

所以函数在区间上是增函数,不妨设

所以等价于

等价于函数在区间上单调递减.即在区间上恒成立.

在区间上恒成立.

在区间上单调递减.

所以,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3﹣x2+x.
(1)求函数f(x)在[﹣1,2]上的最大值和最小值;
(2)若函数g(x)=f(x)﹣4x,x∈[﹣3,2],求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的极值
(2)若x∈[﹣1,+∞),求函数f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax﹣ax+2(a>0,且a≠1),若g(2)=a,则f(2)的值为(
A.
B.2
C.
D.a2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数有两个不同的零点,求实数的取值范围;

(2)求当时, 恒成立的的取值范围,并证明

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 x﹣1(x∈R).
(1)求函数f(x)的单调递减区间;
(2)若f(x0)= ,求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是矩形, 平面 是等腰三角形, 的一个三等分点(靠近点),的延长线与的延长线交于点,连接

(1)求证:

(2)求证:在线段上可以分别找到两点 ,使得直线平面,并分别求出此时的值.

查看答案和解析>>

同步练习册答案