精英家教网 > 高中数学 > 题目详情
甲、乙、丙、丁、戊5名学生进行劳动技术比赛,决出第一名至第五名的名次.比赛之后甲乙两位参赛者去询问成绩,回答者对甲说“根遗憾,你和乙都投有得到冠军”,对乙说“你当然不会是最差的”.
(Ⅰ)从上述回答分析,5人的名次排列可能有多少种不同的情况;
(Ⅱ)比赛组委会规定,第一名获奖金1000元,第二名获奖金800元,第三名获奖金600元,第四及第五名没有奖金,求丙获奖金数的期望.
考点:离散型随机变量的期望与方差,排列、组合的实际应用
专题:概率与统计
分析:(Ⅰ)由已知条件,先求出冠军有几种可能,再求乙的名次有几种可能,上述位置确定后,求出甲连同其余二人可任意排列,有几种可能,按乘法原理计算名次排列的可能情况的种数.
(Ⅱ)丙可能获得第一名、第二名、第三名、第四名或第五名,并分别求出相应的概率,能得到随机变量丙获得奖金数X的可能取值为1000,800,600,0,由此能求出结果.
解答: 解:(Ⅰ)∵甲、乙都没有得冠军,
∴冠军是其余3人中的一个,有
A
1
3
种可能,
∵乙不是第五名,
∴乙是第二、第三或第四名中的一名,有
A
1
3
种可能,
上述位置确定后,甲连同其余二人可任意排列,有
A
3
3
种可能,
∴名次排列的可能情况的种数有:
A
1
3
A
1
3
A
3
3
=54种可能.
(Ⅱ)丙可能获得第一名、第二名、第三名、第四名或第五名,
P(丙获第一名)=
1
3

P(丙获第二名)=
C
1
2
C
1
2
C
1
2
54
=
4
27

P(丙获第三名)=P(丙获第四名)=
4
27

P(丙获第五名)=
2
9

∴随机变量丙获得奖金数X的可能取值为1000,800,600,0,
P(X=1000)=
1
3

P(X=800)=
4
27

P(X=600)=
4
27

P(X=0)=
4
27
+
2
9
=
10
27

EX=1000×
1
3
+800×
4
27
+600×
4
27
=
14600
27
(元).
点评:本题考查离散型随机变量的分布列和数学期望,是中档题,在历年高考中都是必考题.解题时要注意排列组合的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足约束条件
x>0
4x+3y≤4
y≥0
,则z=2y-x的最小值是(  )
A、-1
B、0
C、1
D、
8
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次综合知识竞赛中,有两道填空题和两道解答题,填空题每题5分,解答题每题10分,某参赛者答对填空题的概率都是
3
4
,答对解答题的概率都是
2
3
,解答备题的结果是相互独立的.
(Ⅰ)求该参赛者恰好答对一道题的概率;
(Ⅱ)求该参赛者的总得分X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C的对边分别为a,b,c,若向量
m
=(cosB,2cos2
C
2
-1)与向量
n
=(2a-b,c)共线.
(1)求角C的大小;
(2)若c=2
3
,S△ABC=2
3
,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,AB∥CD,△PAB和△PAD是两个边长为2的正三角形.DC=4,PD⊥PB,点E是CD的中点.
(Ⅰ)求证:AE⊥面PBD:
(Ⅱ)求直线CB与平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直角坐标平面上的矩形OABC中,|OA|=2,|OC|=
3
,点P,Q满足
OP
OA
AQ
=1(1-λ)
AB
(λ∈R)
,点D是C关于原点的对称点,直线DP与CQ相交于点M.
(1)求点M的轨迹方程;
(2)若过点F(-1,0)且斜率不为零的直线与点M的轨迹相交于G,H两点,直线AG和AH与定直线l:x=-4分别相交于点R,S,试判断以RS为直径的圆是否经过点F?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+x2-ax(a∈R).
(Ⅰ)当a=3时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)有两个极值点x1,x2,且x1∈(0,1],求证:f(x1)-f(x2)≥-
3
4
+ln2;
(Ⅲ)设g(x)=f(x)+2ln
ax+2
6
x
,对于任意a∈(2,4),总存在x∈[
3
2
,2]
,使g(x)>k(4-a2)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
4
x2+bx-
3
4
.若对任意实数α,β,不等式f(cosα)≤0,f(2-sinβ)≥0恒成立,则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足不等式组
2x-y≤0
x+y-3≥0
x+2y≤m
,且z=x-y的最小值为-3,则实数m的值为(  )
A、-1
B、-
5
2
C、6
D、7

查看答案和解析>>

同步练习册答案