精英家教网 > 高中数学 > 题目详情
在一次综合知识竞赛中,有两道填空题和两道解答题,填空题每题5分,解答题每题10分,某参赛者答对填空题的概率都是
3
4
,答对解答题的概率都是
2
3
,解答备题的结果是相互独立的.
(Ⅰ)求该参赛者恰好答对一道题的概率;
(Ⅱ)求该参赛者的总得分X的分布列及数学期望E(X).
考点:离散型随机变量的期望与方差,相互独立事件的概率乘法公式
专题:概率与统计
分析:(Ⅰ)设参赛者答对填空题为事件Ai(i=1,2),答对解答题为事件Bi(i=1,2),由此能求出该参赛者恰好答对一道题的概率.
(Ⅱ)由题意知X可能的取值为0,5,10,15,20,25,30,分别求出P(X=0),P(X=5),P(X=10),P(X=15),P(X=20),P(X=25),P(X=30),由此能求出X的分布列和EX.
解答: 解:(Ⅰ)设参赛者答对填空题为事件Ai(i=1,2),
答对解答题为事件Bi(i=1,2),
则有P(
.
A1
.
A2
.
B1
B2
)=P(
.
A1
.
A2
B1
.
B2
)=(
1
4
2×
1
3
×
2
3
=
1
72

P(A1
.
A2
.
B1
.
B2
)=P(
.
A1
A2
.
B1
.
B2
)=
1
4
×
3
4
×(
1
3
)2
=
1
48

所以该参赛者恰好答对一道题的概率为:
P=2×
1
72
+2×
1
48
=
5
72

(Ⅱ)由题意知X可能的取值为0,5,10,15,20,25,30,
P(X=0)=P(
.
A1
.
A2
.
B1
.
B2
)=(
1
4
2•(
1
3
2=
1
144

P(X=5)=P(A1
.
A2
.
B1
.
B2
)+P(
.
A1
A2
.
B1
.
B2
)=2×
1
4
×
3
4
×(
1
3
)2
=
1
24

P(X=10)=P(A1
.
A2
.
B1
.
B2
)+P(
.
A1
.
A2
.
B1
B2)
+P(
.
A1
.
A2
B1
.
B2)

=(
3
4
2×(
1
3
2+2×(
1
4
)2
×
1
3
×
2
3
=
13
144

P(X=15)=P(A1
.
A2
.
B1
B2)
+P(A1
.
A2
B1
.
B2
)+
P(
.
A1
A2
.
B1
B2)
+P(
.
A1
A2B1
.
B2
)

=4×
1
4
×
3
4
×
2
3
×
1
3
=
1
6

P(X=20)=P(A1A2
.
B1
B2
)+P(A1A2B1
.
B2
)+P(
.
A1
.
A2
B1B2

=2×(
3
4
)2×
1
3
×
2
3
+(
1
4
)2×(
2
3
)2
=
5
18

P(X=25)=P(
.
A1
A2B1B2)
+P(A1
.
A2
B1B2

=2×
1
4
×
3
4
×(
2
3
)2
=
1
6

P(X=30)=P(A1A2B1B2)=(
2
4
)2(
2
3
)2
=
1
4

∴X的分布列为:
 X  0  5  10  15  20  25 30 
 P  
1
144
 
1
24
 
13
144
 
1
6
 
5
18
 
1
6
1
4
 
∴EX=0×
1
144
+5×
1
24
+10×
13
144
+15×
1
6
+20×
5
18
+25×
1
6
+30×
1
4
=
125
6
点评:本题考查概率的求法,考查离散型随机事件的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知i是虚数单位,若复数z满足i=
1-i
z
,则z=(  )
A、-1-iB、-1+i
C、1-iD、1+i

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:①321<325; ②321>325;③loga6<loga7(0<a<1);④loga6>loga7(0<a<1); 正确的是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|0<x≤3},B={x|x<-1,或x>2},则A∩B=(  )
A、(2,3]
B、(-∞,-1)∪(0,+∞)
C、(-1,3]
D、(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:对任意的区间[1,2]内的实数x,x2-a≥0恒成立;命题q:方程x2+2ax+2-a=0有实根.若命题p,q都是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

衡水市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的则被淘汰.若现有500人参加测试,学生成绩的频率分布直方图如图:
(Ⅰ)求获得参赛资格的人数;
(Ⅱ)根据频率直方图,估算这500名学生测试的平均成绩;
(Ⅲ)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛,已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响,已知他连续两次答错的概率为
1
9
,求甲在初赛中答题个数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学完成一项任务共用去9h,他记录的完成工作量的百分数如下表:
时间/h 1 2 3 4 5 6 7 8 9
完成的百分数/% 15 30 45 60 60 70 80 90 100
(1)如果用T(x)表示x(h)后他完成工作量的百分数,那么T(5)是多少?求出T(x),并画出其图象;
(2)如果该同学在早晨8时开始工作,什么时候他在休息?

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙、丁、戊5名学生进行劳动技术比赛,决出第一名至第五名的名次.比赛之后甲乙两位参赛者去询问成绩,回答者对甲说“根遗憾,你和乙都投有得到冠军”,对乙说“你当然不会是最差的”.
(Ⅰ)从上述回答分析,5人的名次排列可能有多少种不同的情况;
(Ⅱ)比赛组委会规定,第一名获奖金1000元,第二名获奖金800元,第三名获奖金600元,第四及第五名没有奖金,求丙获奖金数的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

若在平面直角坐标系内过点P(1,
3
)
且与原点的距离为d的直线有两条,则d的取值范围是
 

查看答案和解析>>

同步练习册答案