精英家教网 > 高中数学 > 题目详情
已知实数x,y满足不等式组
2x-y≤0
x+y-3≥0
x+2y≤m
,且z=x-y的最小值为-3,则实数m的值为(  )
A、-1
B、-
5
2
C、6
D、7
考点:简单线性规划
专题:不等式的解法及应用
分析:先作出不等式组对应的平面区域,利用z=x-y的最小值为-3,建立条件关系即可求实数m的值.
解答: 解:由z=x-y得y=x-z,
由图象可知要使z=x-y的最小值为-3,
即y=x+3,此时直线y=x+3对应区域的截距最大,
y=x+3
x+y-3=0
,解得
x=0
y=3

即A(0,3),
同时A也在直线x+2y=m上,
即m=6,
故选:C.
点评:本题主要考查线性规划的应用,利用目标函数取得最小值得到平面区域的对应关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙、丙、丁、戊5名学生进行劳动技术比赛,决出第一名至第五名的名次.比赛之后甲乙两位参赛者去询问成绩,回答者对甲说“根遗憾,你和乙都投有得到冠军”,对乙说“你当然不会是最差的”.
(Ⅰ)从上述回答分析,5人的名次排列可能有多少种不同的情况;
(Ⅱ)比赛组委会规定,第一名获奖金1000元,第二名获奖金800元,第三名获奖金600元,第四及第五名没有奖金,求丙获奖金数的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

若在平面直角坐标系内过点P(1,
3
)
且与原点的距离为d的直线有两条,则d的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x+y-5≤0
x-2y+1≤0
x-1≥0
,则z=x+2y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:①、若m>0,则方程x2-x+m=0有实根. ②、若x>1,y>1,则x+y>2的逆命题. ③、对任意的x∈{x|-2<x<4},|x-2|<3的否定形式. ④、△>0是一元二次方程ax2+bx+c=0有一正根和一负根的充要条件.是真命题的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x∈R,若函数f(x)为单调递增函数,且对任意实数x,都有f[f(x)-ex]=e+1(e是自然对数的底数),则f(ln2)的值等于(  )
A、1B、e+lC、3D、e+3

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x、y满足
x+2y≤6
2x+y≤6
x≥0,y≥0
,则z=max{2x+3y-1,x+2y+2}的取值范围是(  )
A、[2,5]
B、[2,9]
C、[5,9]
D、[-1,9]

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两中学各选出7名高一学生参加数学竞赛,他们取得的成绩的茎叶图如图,其中甲校学生成绩的众数是80,乙校学生成绩的中位数是86,则x+y的值为(  )
A、9B、8C、7D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15)
,…,第五组[17,18],下图是按上述分组方法得到的频率分布直方图.
(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(2)估计该组成绩的中位数(保留到小数点后两位)
(3)假设第一、五组中任意两个学生成绩都不相同,若从第一、五组所有成绩中随机取出两个,求这两个成绩分别来自不同组的概率.

查看答案和解析>>

同步练习册答案